1. |
Wang R, Lei T, Cui R, et al. Medical image segmentation using deep learning: a survey. IET Image Processing, 2022, 16(5): 1243-1267.
|
2. |
Celaya A, Actor J A, Muthusivarajan R, et al. PocketNet: a smaller neural network for medical image analysis. IEEE Transactions on Medical Imaging, 2023, 42(4): 1172-1184.
|
3. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany: Springer International Publishing, 2015: 234-241.
|
4. |
Chen J, Lu Y, Yu Q, et al. Transunet: transformers make strong encoders for medical image segmentation. Arxiv Preprint, 2021, arxiv: 2102.04306.
|
5. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need//31st Conference on Neural Information Processing Systems (NIPS2017), Long Beach: NIPS, 2017: 6000-6010.
|
6. |
Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 205-218.
|
7. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022.
|
8. |
Zhou H Y, Guo J, Zhang Y, et al. nnFormer: volumetric medical image segmentation via a 3D transformer. IEEE Transactions on Image Processing, 2023, 32: 4036-4045.
|
9. |
Zhang X, Zhou X, Lin M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 6848-6856.
|
10. |
Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. Arxiv Preprint, 2017, arxiv: 1704.04861.
|
11. |
Valanarasu J M J, Oza P, Hacihaliloglu I, et al. Medical transformer: gated axial-attention for medical image segmentation//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Strasbourg: Springer International Publishing, 2021: 36-46.
|
12. |
Wang H, Zhu Y, Green B, et al. Axial-deeplab: stand-alone axial-attention for panoptic segmentation//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 108-126.
|
13. |
沈瑜, 严源, 宋婧. 等. 基于并行轻量化卷积和多尺度融合的脑部磁共振图像配准. 生物医学工程学杂志, 2024, 41(2): 213-219.
|
14. |
Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. Arxiv Preprint, 2015, arxiv: 1503.02531.
|
15. |
Xu K, Rui L, Li Y, et al. Feature normalized knowledge distillation for image classification//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 664-680.
|
16. |
Tung F, Mori G. Similarity-preserving knowledge distillation//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul: IEEE, 2019: 1365-1374.
|
17. |
Tian Z, Chen P, Lai X, et al. Adaptive perspective distillation for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1372-1387.
|
18. |
Li K, Yu L, Wang S, et al. Towards cross-modality medical image segmentation with online mutual knowledge distillation//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 775-783.
|
19. |
Dou Q, Liu Q, Heng P A, et al. Unpaired multi-modal segmentation via knowledge distillation. IEEE Transactions on Medical Imaging, 2020, 39(7): 2415-2425.
|
20. |
Hu M, Maillard M, Zhang Y, et al. Knowledge distillation from multi-modal to mono-modal segmentation networks//Medical Image Computing and Computer Assisted Intervention (MICCAI 2020), Lima, Peru: Springer International Publishing, 2020: 772-781.
|
21. |
Luo Y, Chen Z, Zhou S, et al. Self-distillation augmented masked autoencoders for histopathological image classification. Arxiv Preprint, 2022, arxiv: 2203.16983.
|
22. |
You C, Zhou Y, Zhao R, et al. SimCVD: simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Transactions on Medical Imaging, 2022, 41(9): 2228-2237.
|
23. |
Tragakis A, Kaul C, Murray-Smith R, et al. The fully convolutional transformer for medical image segmentation//2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI: IEEE, 2023: 3660-3669.
|
24. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 770-778.
|
25. |
Zhao Q, Zhong L, Xiao J, et al. Efficient multi-organ segmentation from 3D abdominal CT images with lightweight network and knowledge distillation. IEEE Transactions on Medical Imaging, 2023, 42(9): 2513-2523.
|
26. |
Bernard O, Lalande A, Zotti C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525.
|
27. |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring Method for deep learning-based biomedical image segmentation. Nature Methods, 2021, 18(2): 203-211.
|
28. |
Wang G, Luo X, Gu R, et al. PyMIC: a deep learning toolkit for annotation-efficient medical image segmentation. Computer Methods and Programs in Biomedicine, 2023, 231: 107398.
|
29. |
Mehta S, Rastegari M, Caspi A, et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation//15th European Conference on Computer Vision (ECCV), Munich: ECCV, 2018: 561-580.
|
30. |
Sandler M, Howard A, Zhu M, et al. MobileNetV2: inverted residuals and linear bottlenecks// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 4510-4520.
|