1. |
Coe F L, Evan A, Worcester E. Kidney stone disease. J Clin Invest, 2005, 115(10): 2598-2608.
|
2. |
Evan A P, Worcester E M, Coe F L, et al. Mechanisms of human kidney stone formation. Urolithiasis, 2015, 43(1): 19-32.
|
3. |
Lambin P, Leijenaar R T H, Deist T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017, 14(12): 749-762.
|
4. |
Mayerhoefer M E, Materka A, Langs G, et al. Introduction to radiomics. Journal of Nuclear Medicine, 2020, 61(4): 488-495.
|
5. |
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magnetic Resonance Imaging, 2012, 30(9): 1234-1248.
|
6. |
Yip S S, Aerts H J. Applications and limitations of radiomics. Physics in Medicine & Biology, 2016, 61(13): R150.
|
7. |
Huynh E, Coroller T P, Narayan V, et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiotherapy and Oncology, 2016, 120(2): 258-266.
|
8. |
李琼, 柏正尧, 刘莹芳. 糖尿病性视网膜图像的深度学习分类方法. 中国图象图形学报, 2018, 23(10): 1594-1603.
|
9. |
Zheng J, Yu H, Batur J, et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney International, 2021, 100(4): 870-880.
|
10. |
Shen D, Wu G, Suk H I. Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 2017, 19: 221-248.
|
11. |
施俊, 汪琳琳, 王珊珊, 等. 深度学习在医学影像中的应用综述. 中国图象图形学报, 2020, 25(10): 1953-1981.
|
12. |
Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42: 60-88.
|
13. |
Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: overview, challenges and the future. Classification in BioApps: Automation of Decision Making, 2018, 26: 323-350.
|
14. |
何雪英, 韩忠义, 魏本征. 基于深度学习的乳腺癌病理图像自动分类. 计算机工程与应用, 2018, 54(12): 121-125.
|
15. |
Billones C D, Demetria O J L D, Hostallero D E D, et al. DemNet: a convolutional neural network for the detection of Alzheimer's disease and mild cognitive impairment//2016 IEEE Region 10 Conference (TENCON). Marina Bay Sands: IEEE, 2016: 3724-3727.
|
16. |
Gao X W, Hui R, Tian Z. Classification of CT brain images based on deep learning networks. Computer Methods and Programs in Biomedicine, 2017, 138: 49-56.
|
17. |
Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-288.
|
18. |
Ke G, Meng Q, Finley T, et al. Lightgbm: a highly efficient gradient boosting decision tree//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017, 3149–3157.
|
19. |
Wright S J. Coordinate descent algorithms. Mathematical Programming, 2015, 151(1): 3-34.
|
20. |
Myers L, Sirois M J. Spearman correlation coefficients, differences between. Encyclopedia of Statistical Sciences, 2006. DOI: 10.1002/0471667196.ess5050.
|
21. |
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52.
|
22. |
Grunkemeier G L, Wu Y, Furnary A P. What is the value of a p value?. Ann Thorac Surg, 2009, 87(5): 1337-1343.
|
23. |
Rigatti S J. Random forest. Journal of Insurance Medicine, 2017, 47(1): 31-39.
|
24. |
Geurts P, Ernst D, Wehenkel L. Extremely randomized tree. Machine Learning, 2006, 63(1): 3-42.
|
25. |
Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting. R Package Version 0.4-2, 2015, 1(4): 1-4.
|
26. |
Huo X, Sun G, Tian S, et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification. Biomedical Signal Processing and Control, 2024, 87: 105534.
|
27. |
Xu J, Pan Y, Pan X, et al. RegNet: self-regulated network for image classification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11): 9562-9567.
|
28. |
Wang F, Jiang M, Qian C, et al. Residual attention network for image classification//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3156-3164.
|
29. |
Tatsunami Y, Taki M. Sequencer: deep lstm for image classification//Proceedings of the 36th International Conference on Neural Information Processing Systems, New York: ACM, 2022, 38204-38217.
|
30. |
Chen C F R, Fan Q, Panda R. Crossvit: cross-attention multi-scale vision transformer for image classification//Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice: IEEE, 2021: 357-366.
|