1. |
Islam S, Nobel F A, Sabrina S, et al. Assessment and comparison of cardiovascular disease risk factors and biochemical parameters among men and women: A cross-sectional study. J Adv Biotechnol Exp Ther, 2023, 6(1): 25-34..
|
2. |
Gharleghi R, Chen N, Sowmya A, et al. Towards automated coronary artery segmentation: A systematic review. Comput Methods Programs Biomed, 2022, 225: 107015..
|
3. |
Zhu X, Cheng Z, Wang S, et al. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed, 2021, 200: 105897..
|
4. |
Razanata A, Prajitno P, Soejoko D S. Evaluation and implementation of Otsu and active contour segmentation in contrast-enhanced cardiac CT Images. J Phys Appl, 2021, 3(2): 136-141..
|
5. |
黄山, 程晓光. 基于水平集方法的冠状动脉CT图像分割. 北京生物医学工程, 2020, 39(6): 569-573..
|
6. |
Shams M, Salem M A M, Hamad S, et al. Coronary artery tree segmentation in computed tomography angiography using Otsu method// 2017 Eighth Int conf Intelligent Computing and Information Systems (ICICIS). Cairo: IEEE, 2017: 416-420..
|
7. |
Wang C, Oda M, Hayashi Y, et al. Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Med Image Anal, 2020, 60: 101623..
|
8. |
姜伟, 吕晓琪, 任晓颖, 等. 结合区域生长与图割算法的冠状动脉CT血管造影图像三维分割. 计算机应用, 2015, 35(5): 1462-1466..
|
9. |
He X, Zhao J, Xu Y, et al. Diagnostic value of coronary computed tomography angiography image under automatic segmentation algorithm for restenosis after coronary stenting. Contrast Media Mol Imaging, 2022, 2022(1): 7013703..
|
10. |
Du H, Shao K, Bao F, et al. Automated coronary artery tree segmentation in coronary CTA using a multiobjective clustering and toroidal model-guided tracking method. Comput Methods Programs Biomed, 2021, 199: 105908..
|
11. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation// 2015 IEEE Conf Computer Vision Pattern Recognition (CVPR). Boston: IEEE, 2015: 3431-3440..
|
12. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention. Munich: MICCAI, 2015: 234-241..
|
13. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation// Medical Image Computing and Computer-Assisted Intervention. Athens: MICCAI, 2016: 424-432..
|
14. |
Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A survey. IEEE Trans Pattern Anal Mach Intell, 2021, 44(7): 3523-3542..
|
15. |
Shen Y, Fang Z, Gao Y, et al. Coronary arteries segmentation based on 3D FCN with attention gate and level set function. IEEE Access, 2019, 7: 42826-42835..
|
16. |
Schlemper J, Oktay O, Chen L, et al. Attention-gated networks for improving ultrasound scan plane detection. arXiv preprint arXiv, 2018: 1804.05338..
|
17. |
Huang W, Huang L, Lin Z, et al. Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images// 2018 IEEE engineering in medicine and biology society (EMBC). Hawai’i: IEEE, 2018: 608-611..
|
18. |
Chen Y C, Lin Y C, Wang C P, et al. Coronary artery segmentation in cardiac CT angiography using 3D multi-channel U-net. arXiv preprint arXiv, 2019: 1907.12246..
|
19. |
Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering// Medical Image Computing and Computer-Assisted Intervention. Cambridge: MICCAI, 1998: 130-137..
|
20. |
Kong B, Wang X, Bai J, et al. Learning tree-structured representation for 3D coronary artery segmentation. Comput Med Imaging Graphics, 2020, 80: 101688..
|
21. |
Pan L S, Li C W, Su S F, et al. Coronary artery segmentation under class imbalance using a U-Net based architecture on computed tomography angiography images. Sci Rep, 2021, 11(1): 14493..
|
22. |
Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Granada: MICCAI, 2018: 3-11..
|
23. |
Huang C. CT image segmentation of COVID-19 based on UNet++ and ResNeXt// 2021 11th International Conference on Information Technology in Medicine and Education (ITME). Wuyishan: IEEE, 2021: 420-424..
|
24. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv, 2020: 2010.11929..
|
25. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conf Neural Information Processing Systems (NIPS 2017). Long Beach: NIPS, 2017: 6000-6010..
|
26. |
Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv, 2021: 2102.04306..
|
27. |
Zhang Y, Liu H, Hu Q. Transfuse: Fusing transformers and CNNs for medical image segmentation// Medical Image Computing and Computer-Assisted Intervention. Strasbourg: MICCAI, 2021: 14-24..
|
28. |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: Transformers for 3D medical image segmentation// Proceedings of the IEEE/CVF winter Conf applications of computer vision. Waikoloa: IEEE, 2022: 574-584..
|
29. |
Wang N, Lin S, Li X, et al. MISSU: 3D medical image segmentation via self-distilling TransUNet. IEEE Trans Med Imaging, 2023, 42(9): 2740-2750..
|
30. |
Dong C, Xu S, Dai D, et al. A novel multi-attention, multi-scale 3D deep network for coronary artery segmentation. Med Image Anal, 2023, 85: 102745..
|
31. |
Ba J L, Kiros J R, Hinton G E. Layer normalization. arXiv preprint arXiv, 2016: 1607.06450..
|
32. |
Yang G, Liu S, Li Y, et al. Short-term prediction method of blood glucose based on temporal multi-head attention mechanism for diabetic patients. Biomed Signal Processing and Control, 2023, 82: 104552..
|
33. |
Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation// 2016 fourth int Conf 3D vision (3DV). Stanford: IEEE, 2016: 565-571..
|
34. |
Zeng A, Wu C, Lin G, et al. ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. Comput Med Imaging Graphics, 2023, 109: 102287..
|
35. |
Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv preprint arXiv: 2017: 1711.05101..
|