With the advantage of providing more natural and flexible control manner, brain-computer interface systems based on motor imagery electroencephalogram (EEG) have been widely used in the field of human-machine interaction. However, due to the lower signal-noise ratio and poor spatial resolution of EEG signals, the decoding accuracy is relative low. To solve this problem, a novel convolutional neural network based on temporal-spatial feature learning (TSCNN) was proposed for motor imagery EEG decoding. Firstly, for the EEG signals preprocessed by band-pass filtering, a temporal-wise convolution layer and a spatial-wise convolution layer were respectively designed, and temporal-spatial features of motor imagery EEG were constructed. Then, 2-layer two-dimensional convolutional structures were adopted to learn abstract features from the raw temporal-spatial features. Finally, the softmax layer combined with the fully connected layer were used to perform decoding task from the extracted abstract features. The experimental results of the proposed method on the open dataset showed that the average decoding accuracy was 80.09%, which is approximately 13.75% and 10.99% higher than that of the state-of-the-art common spatial pattern (CSP) + support vector machine (SVM) and filter bank CSP (FBCSP) + SVM recognition methods, respectively. This demonstrates that the proposed method can significantly improve the reliability of motor imagery EEG decoding.
The brain-computer interface (BCI) based on motor imagery electroencephalography (EEG) shows great potential in neurorehabilitation due to its non-invasive nature and ease of use. However, motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions, leading to low decoding recognition rates with traditional neural networks. To address this, this paper proposed a three-dimensional (3D) convolutional neural network (CNN) method that learns spatial-frequency feature maps, using Welch method to calculate the power spectrum of EEG frequency bands, converted time-series EEG into a brain topographical map with spatial-frequency information. A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features. Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%, outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.
Aiming at the human-computer interaction problem during the movement of the rehabilitation exoskeleton robot, this paper proposes an adaptive human-computer interaction control method based on real-time monitoring of human muscle state. Considering the efficiency of patient health monitoring and rehabilitation training, a new fatigue assessment algorithm was proposed. The method fully combined the human neuromuscular model, and used the relationship between the model parameter changes and the muscle state to achieve the classification of muscle fatigue state on the premise of ensuring the accuracy of the fatigue trend. In order to ensure the safety of human-computer interaction, a variable impedance control algorithm with this algorithm as the supervision link was proposed. On the basis of not adding redundant sensors, the evaluation algorithm was used as the perceptual decision-making link of the control system to monitor the muscle state in real time and carry out the robot control of fault-tolerant mechanism decision-making, so as to achieve the purpose of improving wearing comfort and improving the efficiency of rehabilitation training. Experiments show that the proposed human-computer interaction control method is effective and universal, and has broad application prospects.