1. |
Chen J, Xia Y, Zhou X, et al. fNIRS-EEG BCIs for motor rehabilitation: a review. Bioengineering, 2023, 10(12): 1393.
|
2. |
Gao N, Chen P, Liang L. BCI-VR-based hand soft rehabilitation system with its applications in hand rehabilitation after stroke. Int J Precis Eng Man, 2023, 24(8): 1403-1424.
|
3. |
Chen X, Zhao B, Wang Y, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng, 2019, 16(2): 026012.
|
4. |
何峰, 董博文, 韩锦, 等. 基于头皮脑电的游戏型脑机接口应用研究综述. 电子与信息学报, 2022, 44(2): 415-423.
|
5. |
Deng T, Huo Z, Zhang L, et al. A VR-based BCI interactive system for UAV swarm control. Biomed Signal Process Control, 2023, 85: 104944.
|
6. |
迟新一, 崔红岩, 陈小刚. 结合稳态视觉诱发电位的多模态脑机接口研究进展. 中国生物医学工程学报, 2022, 41(2): 204-213.
|
7. |
刘拓, 叶阳阳, 王坤, 等. 运动想象脑电信号分类算法的研究进展. 生物医学工程学杂志, 2021, 38(5): 995-1002.
|
8. |
Savić A M, Lontis E R, Mrachacz-Kersting N, et al. Dynamics of movement-related cortical potentials and sensorimotor oscillations during palmar grasp movements. Eur J Neurosci, 2020, 51(9): 1962-1970.
|
9. |
Annaby M H, Said M H, Eldeib A M, et al. EEG-based motor imagery classification using digraph Fourier transforms and extreme learning machines. Biomed Signal Process Control, 2021, 69: 102831.
|
10. |
Malan N S, Sharma S. Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbourhood component analysis. IRBM, 2022, 43(3): 198-209.
|
11. |
Zhang S, Zhu Z, Zhang B, et al. Overall optimization of CSP based on ensemble learning for motor imagery EEG decoding. Biomed Signal Process Control, 2022, 77: 103825.
|
12. |
Echtioui A, Zouch W, Ghorbel M, et al. Classification of BCI multiclass motor imagery task based on artificial neural network. Clin EEG Neurosci, 2024, 55(4): 455-464.
|
13. |
Amira E, Wassim Z, Mohamed G, et al. Convolutional neural network with support vector machine for motor imagery EEG signal classification. Multimed Tools Appl, 2023, 82(29): 45891-45911.
|
14. |
Yacine F, Salah H, Amar K, et al. A novel ANN adaptive Riemannian-based kernel classification for motor imagery. Biomed Phys Eng Express, 2022, 9(1): 015010.
|
15. |
Wang W, Qi F, David W, et al. Sparse Bayesian learning for end-to-end EEG decoding. IEEE Trans Pattern Anal Mach Intell, 2023, 45(12): 15632-15649.
|
16. |
Mehrdad R, Salimi J S. CTRAN: CNN-Transformer-based network for natural language understanding. Eng Appl Artif Intell, 2023, 126: 107013.
|
17. |
郭佳霖, 智敏, 殷雁君, 等. 图像处理中 CNN 与视觉 Transformer 混合模型研究综述. 计算机科学与探索, 2024: 1-18.
|
18. |
Li H, Ding M, Zhang R, et al. Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network. Biomed Signal Process Control, 2022, 72: 103342.
|
19. |
褚亚奇, 朱波, 赵新刚, 等. 基于时空特征学习卷积神经网络的运动想象脑电解码方法. 生物医学工程学杂志, 2021, 38(1): 1-9.
|
20. |
Zhang R, Chen Y, Xu Z, et al. Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network. Front Neurosci, 2023, 17: 1129049.
|
21. |
Roy A M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomed Signal Process Control, 2022, 74: 103496.
|
22. |
Zhang D, Chen K, Jian D, et al. Motor imagery classification via temporal attention cues of graph embedded EEG signals. IEEE J Biomed Health, 2020, 24(9): 2570-2579.
|
23. |
Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): e215-e220.
|
24. |
Altan G, Yayık A, Kutlu Y. Deep learning with ConvNet predicts imagery tasks through EEG. Neural Process Lett, 2021, 53(4): 2917-2932.
|
25. |
Woodworth B E, Patel K K, Srebro N. Minibatch vs local SGD for heterogeneous distributed learning. Adv Neural Inf Process Syst, 2020, 33: 6281-6292.
|
26. |
Antony M J, Sankaralingam B P, Mahendran R K, et al. Classification of EEG using adaptive SVM classifier with CSP and online recursive independent component analysis. Sensors, 2022, 22(19): 7596.
|
27. |
Li M, Ruan Z. A novel decoding method for motor imagery tasks with 4D data representation and 3D convolutional neural networks. J Neural Eng, 2021, 18(4): 046029.
|
28. |
Lawhern J V, Solon J A, Waytowich R N, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng, 2018, 15(5): 056013.
|
29. |
Chaudhary S, Taran S, Bajaj V, et al. Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J, 2019, 19(12): 4494-4500.
|
30. |
Hermosilla D M, Codorniú R T, Baracaldo R L, et al. Shallow convolutional network excel for classifying motor imagery EEG in BCI applications. IEEE Access, 2021, 9: 98275-98286.
|