ObjectiveTo understand the relationship between the anatomy and the function of the insula lobe cortex based on the stereo-electro encephalography (SEEG) by direct electric stimulation of the insula cortex performed in the patients who suffered from the refractory epilepsy. MethodsRetrospective review was performed on 12 individuals with refractory epilepsy who were diagnosed in the Department of Functional neurosurgery of RenJi Hospital from December 2013 to September 2015. We studied all the SEEG electrodes implanted in the brain with contacts in the insula cortex. Direct electric stimulation was given to gain the brain mapping of the insula. Results12 consecutive patients with refractory epilepsy were implanted SEEG electrodes into the insula cortex. In all, 176 contacts were in the insula cortex, and 154 were included. The main clinical manifestations obtained by the stimulation were somatosensory abnormalities, laryngeal constriction, dyspnea, nausea, flustered. While somatosensory symptoms were located in the posterior insula, visceral sensory symptoms distribute relatively in the anterior insula, and other symptoms were mainly in the central and anterior part. ConclusionsThe symptoms of the insula present mainly according to the anatomy, but some of them are mixed. In addition, the manifestations of the insula are usually complex and individually.
ObjectiveTo evaluate the application of stereotactic electrode implantation on precise epileptogenic zone localization. MethodRetrospectively studied 140 patients with drug-resist epilepsy from March 2012 to June 2015, who undergone a procedure of intracranial stereotactic electrode for localized epileptogenic zone. ResultsIn 140 patients who underwent the ROSA navigated implantation of intracranial electrode, 109 are unilateral implantation, 31 are bilateral; 3 patients experienced an intracranial hematoma caused by the implantation. Preserved time of electrodes, on average, 8.4days (range 2~35 days); Obseved clinical seizures, on average, 10.8 times per pt (range 0~98 times); There were no cerebrospinal fluid leak, intracranial hematoma, electrodes fracture or patient death, except 2 pt's scalp infection (1.43%, scalp infection rate); 131 pts' seizure onset area was precisely localized; 71 pts underwent SEEG-guide resections and were followed up for more than 6 months. In the group of 71 resection pts, 56 pts were reached Engel I class, 2 were Engel Ⅱ, 3 was Engel Ⅲ and 10 were Engel IV class. ConclusionTo intractable epilepsy, when non-invasive assessments can't find the epileptogenic foci, intracranial electrode implantation combined with long-term VEEG is an effective method to localize the epileptogenic foci, especially the ROSA navigated stereotactic electrode implantation, which is a micro-invasive, short-time, less-complication, safe-guaranteed, and precise technique.
Objective To research clinical manifestations, electrophysiological characteristics of epileptic seizures arising from diagonal sulci (DS), to improve the level of the diagnosis and treatment of frontal epilepsy. MethodsWe reviewed all the patients underwent a detailed presurgical evaluation, including 5 patients with seizures to be proved originating from diagonal sulci by Stereo-electroencephalography (SEEG). All the 5 patients with detailed medical history, head Magnetic resonance (MRI), the Positron emission computered tomography (PET-CT) and psychological evaluation, habitual seizures were recorded by Video-electroencephalography (VEEG) and SEEG, we review the intermittent VEEG and ictal VEEG, analyzing the symptoms of seizures. Results 5 patients were divided into 2 groups by SEEG, group 1 including 3 patients with seizures arising from the bottom of DS, group 2 including 2 patients with seizures arising from the surface of DS, all the tow groups with seizures characterized by both having tonic and complex motors, tonic seizures were prominent in seizures from left DS, and tonic seizures may absent in seizures from right DS. Intermittent discharges with group1 were diffused, and intermittent discharges with group 2 were focal, but both brain areas of frontal and temporal were infected. Ictal EEG findings were consistent with the characteristics of neocortical seizures, the onset EEG shows voltage attenuation, seizures from bottom of DS with diffused EEG onset, and seizures from surface of DS with more focal EEG onset, but both frontal and anterior temporal regions were involved. Conclusionthe symptom of seizures arising from DS characterized by tonic and complex motor, can be divided into seizures arising from the bottom of DS and seizures from the surface of DS, with different electrophysiological characters.
Epileptic seizures and the interictal epileptiform discharges both have similar waveforms. And a method to effectively extract features that can be used to distinguish seizures is of crucial importance both in theory and clinical practice. We constructed state transfer networks by using visibility graphlet at multiple sampling intervals and analyzed network features. We found that the characteristics waveforms in ictal periods were more robust with various sampling intervals, and those feature network structures did not change easily in the range of the smaller sampling intervals. Inversely, the feature network structures of interictal epileptiform discharges were stable in range of relatively larger sampling intervals. Furthermore, the feature nodes in networks during ictal periods showed long-term correlation along the process, and played an important role in regulating system behavior. For stereo-electroencephalography at around 500 Hz, the greatest difference between ictal and the interictal epileptiform occurred at the sampling interval around 0.032 s. In conclusion, this study effectively reveals the correlation between the features of pathological changes in brain system and the multiple sampling intervals, which holds potential application value in clinical diagnosis for identifying, classifying, and predicting epilepsy.