1. |
Bartolomei F, Lagarde S, Wendling F, et al. 癫痫网络的定义: 立体脑电图和信号分析的贡献, 郑舒畅, 译. 癫痫杂志, 2018, 4(2): 135-149.
|
2. |
单宝莲, 张力新, 徐舫舟, 等. 基于脑电信号的癫痫发作预测特征及识别. 生物化学与生物物理进展, 2023, 50(2): 322-333.
|
3. |
Thanh L T, Dao N T A, Dung N V, et al. Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng, 2020, 17(1): 016023.
|
4. |
朱丹. 癫痫的诊断与治疗—临床实践与思考. 北京: 人民卫生出版社, 2017: 624-700.
|
5. |
蹇兆鑫. 颞叶癫痫小鼠海马网络中的高—低频信号研究. 成都: 电子科技大学, 2023.
|
6. |
王小艳. 基于多尺度转移网络的非线性时间序列分析. 上海: 华东师范大学, 2023.
|
7. |
Gao Z, Yang Y, Cai Q. Temporal complex network analysis//Hu L, Zhang Z. EEG signal processing and feature extraction. Cham: Springer International Publishing, 2019: 287-300.
|
8. |
汪文杰, 姚旭峰. 基于人工智能的癫痫发作预测研究综述. 软件工程, 2024, 27(4): 1-5.
|
9. |
Yang Y, Zhou M, Niu Y, et al. Epileptic seizure prediction based on permutation entropy. Front Comput Neurosci, 2018: 12-55.
|
10. |
张瑞, 宋江玲, 胡文凤. 癫痫脑电的特征提取方法综述. 西北大学学报(自然科学版), 2016, 46(6): 781-788,794.
|
11. |
Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: the visibility graph. Proc Natl Acad Sci U S A, 2008, 105(13): 4972-4975.
|
12. |
任彦霖. 基于复杂网络拓扑结构的脑电信号非线性分析. 江苏: 中国矿业大学, 2023.
|
13. |
李霞, 李守伟. 基于EMD与DVG的非线性时间序列预测模型及其应用研究. 中国管理科学, 2022, 30(9): 275-286.
|
14. |
Ribeiro P M. Efficient and scalable algorithms for network motifs discovery. Portugal: Universidade Do Porto, 2011.
|
15. |
Sporns O, Kötter R. Motifs in brain networks. PLoS Biology, 2004, 2(11): e369.
|
16. |
Buckner R L, DiNicola L M. The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci, 2019, 20(10): 593-608.
|
17. |
Shen-Orr S S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet, 2002, 31(1): 64-68.
|
18. |
Stephen M, Gu C, Yang H. Visibility graph based time series analysis. PLoS ONE, 2015, 10(11): e0143015.
|
19. |
韦雷. 难治性癫痫脑电背景活动的非线性特征. 南宁: 广西医科大学, 2020.
|
20. |
熊馨, 罗剑花, 武瑞锋, 等. 基于微状态方法的癫痫脑电信号识别研究. 传感技术学报, 2022, 35(12): 1671-1677.
|
21. |
蔡冬梅, 周卫东, 刘凯, 等. 基于Hurst指数和SVM的癫痫脑电检测方法. 中国生物医学工程学报, 2010, 29(6): 836-840.
|
22. |
崔刚强, 夏良斌, 梁建峰, 等. 基于小波多尺度分析和极限学习机的癫痫脑电分类算法. 生物医学工程学杂志, 2016, 33(6): 1025-1030,1038.
|
23. |
Wang Y, Weng T, Deng S, et al. Sampling frequency dependent visibility graphlet approach to time series. Chaos, 2019, 29(2): 023109.
|
24. |
Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824-827.
|
25. |
Hamed K H. Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resour Res, 2007, 43: W04413.
|
26. |
Bassingthwaighte J B, Raymond G M. Evaluating rescaled range analysis for time series. Ann Biomed Eng, 1994, 22: 432-444.
|
27. |
Bernabei J M, Li A, Revell A Y, et al. OpenNeuro. (2022-04-17)[2023-03-22]. https://openneuro.org/datasets/ds004100/versions/1.1.3.
|
28. |
Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131(Pt 7): 1818-1830.
|
29. |
刘晓燕. 临床脑电图学(第2版). 北京: 人民卫生出版社, 2011: 179-193.
|
30. |
Sleimen-Malkoun R, Perdikis D, Müller V, et al. Brain dynamics of aging: multiscale variability of EEG signals at rest and during an auditory oddball task. eNeuro, 2015, 2(3): ENEURO. 0067-14.
|
31. |
Hagen E, Magnusson S H, Ness T V, et al. Brain signal predictions from multi-scale networks using a linearized framework. PLoS Comput Biol, 2022, 18(8): e1010353.
|
32. |
Delic J, Alhilali L M, Hughes M A, et al. White matter injuries in mild traumatic brain injury and posttraumatic migraines: Diffusion entropy analysis. Radiology, 2016, 279(3): 859-866.
|
33. |
Pan X, Hou L, Stephen M, et al. Evaluation of scaling invariance embedded in short time series. PLoS One, 2014, 9(12): e116128.
|
34. |
Cohen M X. Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods, 2015, 250: 137-146.
|
35. |
蒋丝丽, 罗华, 阮江海. 基于EEG的失神癫痫发作间期脑功能连接动态改变. 北京生物医学工程, 2022, 41(4): 368-373.
|
36. |
Hadra M, Omidvarnia A, Mesbah M. Temporal complexity of EEG encodes human alertness. Physiol Meas, 2022, 43(9): 095002.
|
37. |
Liu Y, Zeng W, Pan N, et al. EEG complexity correlates with residual consciousness level of disorders of consciousness. BMC Neurol. 2023, 23(1): 140.
|