Although heart transplantation remains to be the optimal treatment for advanced heart failure, its use has been largely limited due to shortage of available donor organs. Over the past two decades, left ventricular assist device (LVAD) has been significantly modified in size, durability and hemocompatibility. In addition to the bridge to transplantation, LVAD has become an attractive alternative to heart transplantation for end-stage heart failure as destination therapy for unsuitable candidates. Although the performance of LVAD has been improving greatly in recent years, there are still great challenges in the management of device complications and low quality of life after implantation. This review will summarize the types of LVAD, indications for implantation, postoperative management and adverse events.
The implantation of left ventricular assist device (LVAD) has significantly improved the quality of life for patients with end-stage heart failure. However, it is assiosciated with the risk of complications, with unplanned readmissions gaining increasing attention. This article reviews the overview, influencing factors, predictive models, and intervention measures for unplanned readmissions among LVAD implantation patients. The aim is to provide scientific guidance for clinical practice, assisting healthcare professionals in accurately assessing patient conditions and formulating appropriate care plans.
ObjectiveTo compare the perioperative renal function changes in patients undergoing heart transplantation (HT) and left ventricular assist device (LVAD) implantation. MethodsPatients with end-stage heart failure who underwent surgical treatment at Beijing Anzhen Hospital, Capital Medical University from January 2019 to April 2024 were included. According to the surgical method, patients were divided into a HT group and a LVAD group, and the estimated glomerular filtration rate (eGFR) of patients before surgery and postoperative 1, 7, 30, 60 days was compared between the two groups. The patients with preoperative renal dysfunction were subdivided into subgroups for comparison of eGFR changes before surgery and 30 days after surgery between the two groups. ResultsA total of 112 patients were enrolled. There were 78 patients in the HT group, including 61 males and 17 females, aged (44.42±18.51) years. There were 34 patients in the LVAD group, including 30 males and 4 females, aged (54.94±11.37) years. Compared with the HT group, the average age of patients in the LVAD group was greater (P<0.001), body mass index was higher (P=0.008), preoperative eGFR was lower (P=0.009), and the proportions of smokers (P=0.017), alcohol drinkers (P=0.041), and diabetes mellitus (P=0.028) patients were higher. Among patients with preoperative renal dysfunction [eGFR<90 mL/(min·1.73 m2)], compared with the HT group, the postoperative eGFR of the LVAD group was significantly higher than that of the HT group, and it was significantly increased compared with that before surgery; the postoperative eGFR of the HT group was comparable to that before surgery, and more than half of the patients had a lower eGFR than before surgery. Among patients with preoperative renal dysfunction, 11 patients in the HT group received continuous renal replacement therapy, and 8 died early; 2 patients in the LVAD group received continuous renal replacement therapy, and 1 died early. ConclusionFor end-stage heart failure patients with combined renal dysfunction, compared with HT, LVAD implantation enables patients to obtain better renal function benefits.
In China, more than half of heart failure patients are ischemic heart failure patients. And a large proportion of left ventricular assist device implantation patients are also ischemic heart failure patients. However, left ventricular assist device implantation in ischemic heart failure patients is facing with problems such as patient screening, coronary artery disease, small left ventricle, mitral insufficiency, and ventricular aneurysm. There are only a few retrospective studies with small sample sizes abroad trying to provide solutions to these problems. While there is a lack of systematic understanding of this issue in China. Therefore, we provide an overview of the application and progress of left ventricular assist devices in ischemic heart failure patients, aiming to help clinicians have a comprehensive understanding of this issue and provide some guidance.
The implantation of a left ventricular assist device (LVAD) is an important therapeutic tool for patients with end-stage heart failure, which can either help patients transit to the heart transplantation stage or serve as destination therapy until the end of their lives. In recent years, the third generation of LVAD has evolved rapidly and several brands have been marketed both domestically and internationally. The number of LVAD implantations has been increasing and the long-term survival rate of implanted patients has improved, so this device has a broad development perspective. This article summarizes the current status, usage standards and precautions, and common complications after implantation of LVAD, as well as looks forward to the future development of LVAD, hoping to be helpful for researchers who are new to this field.
A 56-year male patient was implanted with a third generation magnetic levitation HeartCon left ventricular assist device (LVAD) for refractory heart failure through a left antero-lateral thoracotomy. Inflow cannula of the HeartCon blood pump was inserted via the left apex and outflow tract with the artificial blood vessel was sutured to the descending aorta. The operation process was smooth, the LVAD worked stably, and results of left ventricular assist was good. Implantation of HeartCon LVAD through the left antero-lateral thoracotomy is an alternative technique with less surgical complications, less trauma and satisfactory results.
According to the "Regulations on Clinical Application Management of Medical Technologies," physicians intending to carry out restricted technologies must undergo standardized training and pass assessments in accordance with the clinical application management standards for the respective technology. As ventricular assist technology is classified as a nationally restricted technology, standardized training is one of the essential conditions for its application. This paper primarily explores the standardized training for the clinical application of ventricular assist technology in Shanghai, in light of its background, clinical application, and current training status, with the aim of promoting the standardized and high-quality development of ventricular assist technology locally.
Objective To investigate the efficacy and safety of the Corheart 6 left ventricular assist system in patients with end-stage heart failure. Methods A retrospective study was conducted on patients with advanced heart failure who were treated with Corheart 6 left ventricular assist system from March 2022 to June 2024 in 4 hospitals in Jiangsu Province. The effectiveness and safety of the Corheart 6 left ventricular assist system were evaluated by comparing the changes in the patients' preoperative, discharge, 3-month postoperative, and 6-month postoperative indices. Effectiveness indicators included the New York Heart Association (NYHA) cardiac function class, left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD). The safety indicators included the position and orientation of the intraoperative blood pump inlet tube and the frequency of adverse events. Results In this study, 39 patients were collected, including 34 males and 5 females with a mean age of (56.4±12.5) years, ranging from 20 to 75 years. There was no operative death. There was no death in postoperative 3 months with a survival rate of 100.0%. There were 3 deaths in 6 months postoperatively, with a survival rate of 92.3%. All patients had a preoperative NYHA cardiac function classification of class Ⅳ. The NYHA cardiac function class of the patients improved (P<0.05) at discharge, 3 and 6 months after surgery when compared to the preoperative period. LVEF was significantly higher (P<0.05) at 3 months after surgery than that during the preoperative period. LVEDD was significantly lower (P<0.05) at discharge, 3 and 6 months after surgery than that during the preoperative period. The safety evaluation's findings demonstrated that all 39 patients' intraoperative blood pump inlet tubes were oriented correctly, the artificial blood vessel suture sites were appropriate, there were no instances of device malfunction or pump thrombosis, there were no instances of bleeding or hemolysis, and the rate of the remaining adverse events was low. Conclusion With a low rate of adverse events and an excellent safety profile, the Corheart 6 left ventricular assist system can efficiently enhance cardiac function in patients with end-stage heart failure. It also has considerable clinical uses.