- 1. School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shandong, P. R. China;
- 2. Department of Cardiovascular Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, P. R. China;
The implantation of a left ventricular assist device (LVAD) is an important therapeutic tool for patients with end-stage heart failure, which can either help patients transit to the heart transplantation stage or serve as destination therapy until the end of their lives. In recent years, the third generation of LVAD has evolved rapidly and several brands have been marketed both domestically and internationally. The number of LVAD implantations has been increasing and the long-term survival rate of implanted patients has improved, so this device has a broad development perspective. This article summarizes the current status, usage standards and precautions, and common complications after implantation of LVAD, as well as looks forward to the future development of LVAD, hoping to be helpful for researchers who are new to this field.
Citation: WANG Yi, LI Zijun, YI Jie, LI Hao, CHEN Ming, HOU Wenming. Current status and future perspectives of left ventricular assist devices. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(11): 1670-1678. doi: 10.7507/1007-4848.202309038 Copy
Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
1. | 中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识. 中华心力衰竭和心肌病杂志, 2022, 6(3): 175-192.Chinese Heart Failure Association of Chinese Medical Doctor Association, National Expert Committee on Cardiovascular Diseases and Professional Committee on Heart Failure, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. Chinese expert consensus on clinical application of biomarkers for heart failure. Chin J Heart Fail & Cardiomyopathy, 2022, 6(3): 175-192. |
2. | DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol, 1971, 27(1): 3-11. |
3. | Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443. |
4. | Long JW, Healy AH, Rasmusson BY, et al. Improving outcomes with long-term "destination" therapy using left ventricular assist devices. J Thorac Cardiovasc Surg, 2008, 135(6): 1353-1360. |
5. | Lietz K, Long JW, Kfoury AG, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: Implications for patient selection. Circulation, 2007, 116(5): 497-505. |
6. | Mancini D, Colombo PC. Left ventricular assist devices: A rapidly evolving alternative to transplant. J Am Coll Cardiol, 2015, 65(23): 2542-2555. |
7. | Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251. |
8. | Zhang RS, Hanff TC, Peters CJ, et al. Left ventricular assist device as a bridge to recovery: Single center experience of successful device explantation. ASAIO J, 2022, 68(6): 822-828. |
9. | Kurihara C, Kawabori M, Sugiura T, et al. Bridging to a long-term ventricular assist device with short-term mechanical circulatory support. Artif Organs, 2018, 42(6): 589-596. |
10. | Zuin M, Rigatelli G, Braggion G, et al. Cavitation in left ventricular assist device patients: A potential early sign of pump thrombosis. Heart Fail Rev, 2020, 25(6): 965-972. |
11. | Uriel N, Han J, Morrison KA, et al. Device thrombosis in HeartMateⅡcontinuous-flow left ventricular assist devices: A multifactorial phenomenon. J Heart Lung Transplant, 2014, 33(1): 51-59. |
12. | Xie A, Phan K, Yan TD. Durability of continuous-flow left ventricular assist devices: A systematic review. Ann Cardiothorac Surg, 2014, 3(6): 547-556. |
13. | Gustafsson F, Shaw S, Lavee J, et al. Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: Report from the ELEVATE registry. Eur Heart J, 2018, 39(37): 3454-3460. |
14. | Zimpfer D, Gustafsson F, Potapov E, et al. Two-year outcome after implantation of a full magnetically levitated left ventricular assist device: Results from the ELEVATE registry. Eur Heart J, 2020, 41(39): 3801-3809. |
15. | Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460. |
16. | 卿平, 杜娟, 周星彤, 等. 中国左心室辅助装置候选者术前评估与管理专家共识(2023年). 中国循环杂志, 2023, 38(8): 799-814.Qing P, Du J, Zhou XT, et al. 2023 expert consensus on pre-procedure evaluation and management of eligible patients for left ventricular assist devices. Chin Circ J, 2023, 38(8): 799-814. |
17. | Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: Patient selection and outcomes. Eur J Heart Fail, 2017, 19(5): 595-602. |
18. | Yuzefpolskaya M, Schroeder SE, Houston BA, et al. The Society of Thoracic Surgeons intermacs 2022 annual report: Focus on the 2018 heart transplant allocation system. Ann Thorac Surg, 2023, 115(2): 311-327. |
19. | Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons intermacs 2020 annual report. Ann Thorac Surg, 2021, 111(3): 778-792. |
20. | Walenga JM, Torres TA, Jeske WP, et al. Protein C pathway, inflammation, and pump thrombosis in patients with left ventricular assist devices. Clin Appl Thromb Hemost, 2020, 26: 1076029620959724. |
21. | Elasfar A, Jalali K, Hussein M, et al. Discontinuation of anticoagulant therapy for a month in a patient with HeartMateⅢ continuous-flow left ventricular assist device without thromboembolic events. J Saudi Heart Assoc, 2018, 30(3): 268-270. |
22. | Fiedler AG, Hermsen JL, Smith JW, et al. Long-term discontinuation of warfarin in a patient with HeartMate3 left ventricular assist device without complication. J Card Surg, 2020, 35(2): 447-449. |
23. | Koval CE, Thuita L, Moazami N, et al. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J Heart Lung Transplant, 2014, 33(11): 1164-1172. |
24. | Zhu T, Dufendach KA, Hong Y, et al. Infectious complications following contemporary left ventricular assist device implantation. J Card Surg, 2022, 37(8): 2297-2306. |
25. | Seretny J, Pidborochynski T, Buchholz H, et al. Decreasing driveline infections in patients supported on ventricular assist devices: A care pathway approach. BMJ Open Qual, 2022, 11(2): e001815. |
26. | Martin BJ, Luc JGY, Maruyama M, et al. Driveline site is not a predictor of infection after ventricular assist device implantation. ASAIO J, 2018, 64(5): 616-622. |
27. | Zinoviev R, Lippincott CK, Keller SC, et al. In full flow: Left ventricular assist device infections in the modern era. Open Forum Infect Dis, 2020, 7(5): ofaa124. |
28. | Pavlovic NV, Randell T, Madeira T, et al. Risk of left ventricular assist device driveline infection: A systematic literature review. Heart Lung, 2019, 48(2): 90-104. |
29. | Boyle AJ, Jorde UP, Sun B, et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: An analysis of more than 900 HeartMateⅡ outpatients. J Am Coll Cardiol, 2014, 63(9): 880-888. |
30. | Eisen HJ. Left ventricular assist devices (LVADS): History, clinical application and complications. Korean Circ J, 2019, 49(7): 568-585. |
31. | Kataria R, Jorde UP. Gastrointestinal bleeding during continuous-flow left ventricular assist device support: State of the field. Cardiol Rev, 2019, 27(1): 8-13. |
32. | Carlson LA, Maynes EJ, Choi JH, et al. Characteristics and outcomes of gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: A systematic review. Artif Organs, 2020, 44(11): 1150-1161. |
33. | Converse MP, Sobhanian M, Taber DJ, et al. Effect of angiotensin Ⅱ inhibitors on gastrointestinal bleeding in patients with left ventricular assist devices. J Am Coll Cardiol, 2019, 73(14): 1769-1778. |
34. | Namdaran P, Zikos TA, Pan JY, et al. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J, 2020, 66(6): 645-651. |
35. | Wilson TJ, Baran DA, Herre JM, et al. Gastrointestinal bleeding rates in left ventricular assist device population reduced with octreotide utilization. ASAIO J, 2021, 67(9): 989-994. |
36. | Cornwell WK, Ambardekar AV, Tran T, et al. Stroke incidence and impact of continuous-flow left ventricular assist devices on cerebrovascular physiology. Stroke, 2019, 50(2): 542-548. |
37. | Frontera JA, Starling R, Cho SM, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant, 2017, 36(6): 673-683. |
38. | Chiang YP, Cox D, Schroder JN, et al. Stroke risk following implantation of current generation centrifugal flow left ventricular assist devices. J Card Surg, 2020, 35(2): 383-389. |
39. | Giede-Jeppe A, Roeder SS, Macha K, et al. Management of stroke in patients with left ventricular assist devices. J Stroke Cerebrovasc Dis, 2020, 29(11): 105166. |
40. | Chivukula VK, Beckman JA, Prisco AR, et al. Left ventricular assist device inflow cannula angle and thrombosis risk. Circ Heart Fail, 2018, 11(4): e004325. |
41. | Chivukula VK, Beckman JA, Li S, et al. Left ventricular assist device inflow cannula insertion depth influences thrombosis risk. ASAIO J, 2020, 66(7): 766-773. |
42. | May-Newman K, Montes R, Campos J, et al. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs, 2019, 43(9): 834-848. |
43. | Gopinathannair R, Cornwell WK, Dukes JW, et al. Device therapy and arrhythmia management in left ventricular assist device recipients: A scientific statement from the American Heart Association. Circulation, 2019, 139(20): e967-e989. |
44. | Gulletta S, Scandroglio AM, Pannone L, et al. Clinical characteristics and outcomes of patients with ventricular arrhythmias after continuous-flow left ventricular assist device implant. Artif Organs, 2022, 46(8): 1608-1615. |
45. | Frankfurter C, Molinero M, Vishram-Nielsen JKK, et al. Predicting the risk of right ventricular failure in patients undergoing left ventricular assist device implantation: A systematic review. Circ Heart Fail, 2020, 13(10): e006994. |
46. | Gudejko MD, Gebhardt BR, Zahedi F, et al. Intraoperative hemodynamic and echocardiographic measurements associated with severe right ventricular failure after left ventricular assist device implantation. Anesth Analg, 2019, 128(1): 25-32. |
47. | Raymer DS, Moreno JD, Sintek MA, et al. The combination of tricuspid annular plane systolic excursion and heartmaterisk score predicts right ventricular failure after left ventricular assist device implantation. ASAIO J, 2019, 65(3): 247-251. |
48. | Lo Coco V, De Piero ME, Massimi G, et al. Right ventricular failure after left ventricular assist device implantation: A review of the literature. J Thorac Dis, 2021, 13(2): 1256-1269. |
49. | Ali HR, Kiernan MS, Choudhary G, et al. Right ventricular failure post-implantation of left ventricular assist device: Prevalence, pathophysiology, and predictors. ASAIO J, 2020, 66(6): 610-619. |
50. | Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant, 2015, 34(9): 1123-1130. |
51. | Gulati G, Grandin EW, Kennedy K, et al. Preimplant phosphodiesterase-5 inhibitor use is associated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail, 2019, 12(6): e005537. |
52. | Pasrija C, Sawan MA, Sorensen E, et al. Less invasive left ventricular assist device implantation may reduce right ventricular failure. Interact Cardiovasc Thorac Surg, 2019, 29(4): 592-598. |
53. | Pasrija C, Sawan MA, Sorensen E, et al. Less invasive approach to left ventricular assist device implantation may improve survival in high-risk patients. Innovations (Phila), 2020, 15(3): 243-250. |
54. | Bennett MK, Adatya S. Blood pressure management in mechanical circulatory support. J Thorac Dis, 2015, 7(12): 2125-2128. |
55. | Paprotny M, Ruschitzka F, Lüders B, et al. Pulsatile arterial blood pressure mimicking aortic valve opening during continuous-flow LVAD support: A case report. J Cardiothorac Surg, 2019, 14(1): 219. |
56. | Jorde UP, Saeed O, Koehl D, et al. The Society of Thoracic Surgeons intermacs 2023 annual report: Focus on magnetically levitated devices. Ann Thorac Surg, 2024, 117(1): 33-44. |
57. | Schmitto JD, Hanke JS, Rojas SV, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMateⅢ). J Heart Lung Transplant, 2015, 34(6): 858-860. |
58. | Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—Final report. N Engl J Med, 2019, 380(17): 1618-1627. |
59. | Mehra MR, Goldstein DJ, Cleveland JC, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA, 2022, 328(12): 1233-1242. |
60. | Lemaire A, Anderson MB, Lee LY, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac Surg, 2014, 97(1): 133-138. |
61. | Pahuja M, Yerasi C, Lam PH, et al. Review of pathophysiology of cardiogenic shock and escalation of mechanical circulatory support devices. Curr Cardiol Rep, 2023, 25(4): 213-227. |
62. | 胡盛寿, 王现强, 周星彤. 心室辅助装置治疗心力衰竭—现状和下一步思考. 中国循环杂志, 2023, 38(8): 791-793.Hu SS, Wang XQ, Zhou XT. Ventricular assist devices for the treatment of heart failure: Current state and future prospects. Chin Circ J, 2023, 38(8): 791-793. |
63. | Bartoli CR, Kang J, Zhang D, et al. Left ventricular assist device design reduces von willebrand factor degradation: A comparative study between the HeartMateⅡ and the EVAHEART left ventricular assist system. Ann Thorac Surg, 2017, 103(4): 1239-1244. |
64. | Zayat R, Moza A, Grottke O, et al. In vitro comparison of the hemocompatibility of two centrifugal left ventricular assist devices. J Thorac Cardiovasc Surg, 2019, 157(2): 591-599. |
65. | Zhang J, Chen Z, Griffith BP, et al. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMateⅡ pumps. Int J Artif Organs, 2020, 43(10): 653-662. |
66. | Li Y, Wang H, Xi Y, et al. A new mathematical numerical model to evaluate the risk of thrombosis in three clinical ventricular assist devices. Bioengineering (Basel), 2022, 9(6): 235. |
67. | Wang W, Song Y, Zhang Y, et al. Short-term effect of HeartCon left ventricular assist device on the treatment of 20 adult patients with end-stage heart failure. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2022, 34(12): 1258-1262. |
68. | Chen LW, Wu QS, Dai XF, et al. Early results of left ventricular assist device implantation for the treatment of heart failure. Zhonghua Yi Xue Za Zhi, 2023, 103(12): 920-923. |
69. | Fang P, Yang Y, Wei X, et al. Preclinical evaluation of the fluid dynamics and hemocompatibility of the Corheart 6 left ventricular assist device. Artif Organs, 2023, 47(6): 951-960. |
70. | Horie H, Isoyama T, Ishiyama K. Design of an innovative wireless left ventricular assist device driven by either extracorporeal magnets or an intracorporeal battery pack. ASAIO J, 2023, 69(2): e73-e79. |
71. | Au SLC, McCormick D, Lever N, et al. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy. Artif Organs, 2020, 44(9): 955-967. |
72. | Karim ML, Bosnjak AM, McLaughlin J, et al. Transcutaneous pulsed RF energy transfer mitigates tissue heating in high power demand implanted device applications: In vivo and in silico models results. Sensors (Basel), 2022, 22(20): 7775. |
73. | Sciaccaluga C, Ghionzoli N, Mandoli GE, et al. Biomarkers in patients with left ventricular assist device: An insight on current evidence. Biomolecules, 2022, 12(2): 334. |
74. | Zhang B, Guo S, Fu Z, et al. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: A meta-analysis. Heart Fail Rev, 2022, 27(4): 1053-1061. |
75. | Wert L, Chatterjee A, Dogan G, et al. Minimally invasive surgery improves outcome of left ventricular assist device surgery in cardiogenic shock. J Thorac Dis, 2018, 10(Suppl 15): S1696-S1702. |
76. | Saeed D, Muslem R, Rasheed M, et al. Less invasive surgical implant strategy and right heart failure after LVAD implantation. J Heart Lung Transplant, 2021, 40(4): 289-297. |
77. | 宋述军, 彭燕, 沙次文, 等. 交流磁流体推进血液驱动装置的初步研究. 中国生物医学工程学报, 2006, 25(5): 557-562.Song SJ, Peng Y, Sha CW, et al. Fundamental study of AC magnetohydrodynamic blood driver. Chin J Biomed Eng, 2006, 25(5): 557-562. |
78. | 《中国心血管健康与疾病报告2022》编写组. 《中国心血管健康与疾病报告2022》要点解读. 中国心血管杂志, 2023, 28(4): 297-312.Committee of the Report on Cardiovascular Health and Diseases in China. Interpretation of report on cardiovascular health and diseases in China 2022. Chin J Cardiovasc Med, 2023, 28(4): 297-312. |
79. | Li P, Wu T, Hsu PL, et al. 30-day in vivo study of a fully maglev extracorporeal ventricular assist device. Artif Organs, 2022, 46(11): 2171-2178. |
80. | Li P, Wu L, Dong N. First experience of magnetically levitated extracorporeal left ventricular assist device for cardiogenic shock in China. ESC Heart Fail, 2022, 9(2): 1471-1473. |
- 1. 中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识. 中华心力衰竭和心肌病杂志, 2022, 6(3): 175-192.Chinese Heart Failure Association of Chinese Medical Doctor Association, National Expert Committee on Cardiovascular Diseases and Professional Committee on Heart Failure, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. Chinese expert consensus on clinical application of biomarkers for heart failure. Chin J Heart Fail & Cardiomyopathy, 2022, 6(3): 175-192.
- 2. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol, 1971, 27(1): 3-11.
- 3. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443.
- 4. Long JW, Healy AH, Rasmusson BY, et al. Improving outcomes with long-term "destination" therapy using left ventricular assist devices. J Thorac Cardiovasc Surg, 2008, 135(6): 1353-1360.
- 5. Lietz K, Long JW, Kfoury AG, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: Implications for patient selection. Circulation, 2007, 116(5): 497-505.
- 6. Mancini D, Colombo PC. Left ventricular assist devices: A rapidly evolving alternative to transplant. J Am Coll Cardiol, 2015, 65(23): 2542-2555.
- 7. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med, 2009, 361(23): 2241-2251.
- 8. Zhang RS, Hanff TC, Peters CJ, et al. Left ventricular assist device as a bridge to recovery: Single center experience of successful device explantation. ASAIO J, 2022, 68(6): 822-828.
- 9. Kurihara C, Kawabori M, Sugiura T, et al. Bridging to a long-term ventricular assist device with short-term mechanical circulatory support. Artif Organs, 2018, 42(6): 589-596.
- 10. Zuin M, Rigatelli G, Braggion G, et al. Cavitation in left ventricular assist device patients: A potential early sign of pump thrombosis. Heart Fail Rev, 2020, 25(6): 965-972.
- 11. Uriel N, Han J, Morrison KA, et al. Device thrombosis in HeartMateⅡcontinuous-flow left ventricular assist devices: A multifactorial phenomenon. J Heart Lung Transplant, 2014, 33(1): 51-59.
- 12. Xie A, Phan K, Yan TD. Durability of continuous-flow left ventricular assist devices: A systematic review. Ann Cardiothorac Surg, 2014, 3(6): 547-556.
- 13. Gustafsson F, Shaw S, Lavee J, et al. Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: Report from the ELEVATE registry. Eur Heart J, 2018, 39(37): 3454-3460.
- 14. Zimpfer D, Gustafsson F, Potapov E, et al. Two-year outcome after implantation of a full magnetically levitated left ventricular assist device: Results from the ELEVATE registry. Eur Heart J, 2020, 41(39): 3801-3809.
- 15. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460.
- 16. 卿平, 杜娟, 周星彤, 等. 中国左心室辅助装置候选者术前评估与管理专家共识(2023年). 中国循环杂志, 2023, 38(8): 799-814.Qing P, Du J, Zhou XT, et al. 2023 expert consensus on pre-procedure evaluation and management of eligible patients for left ventricular assist devices. Chin Circ J, 2023, 38(8): 799-814.
- 17. Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: Patient selection and outcomes. Eur J Heart Fail, 2017, 19(5): 595-602.
- 18. Yuzefpolskaya M, Schroeder SE, Houston BA, et al. The Society of Thoracic Surgeons intermacs 2022 annual report: Focus on the 2018 heart transplant allocation system. Ann Thorac Surg, 2023, 115(2): 311-327.
- 19. Molina EJ, Shah P, Kiernan MS, et al. The Society of Thoracic Surgeons intermacs 2020 annual report. Ann Thorac Surg, 2021, 111(3): 778-792.
- 20. Walenga JM, Torres TA, Jeske WP, et al. Protein C pathway, inflammation, and pump thrombosis in patients with left ventricular assist devices. Clin Appl Thromb Hemost, 2020, 26: 1076029620959724.
- 21. Elasfar A, Jalali K, Hussein M, et al. Discontinuation of anticoagulant therapy for a month in a patient with HeartMateⅢ continuous-flow left ventricular assist device without thromboembolic events. J Saudi Heart Assoc, 2018, 30(3): 268-270.
- 22. Fiedler AG, Hermsen JL, Smith JW, et al. Long-term discontinuation of warfarin in a patient with HeartMate3 left ventricular assist device without complication. J Card Surg, 2020, 35(2): 447-449.
- 23. Koval CE, Thuita L, Moazami N, et al. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J Heart Lung Transplant, 2014, 33(11): 1164-1172.
- 24. Zhu T, Dufendach KA, Hong Y, et al. Infectious complications following contemporary left ventricular assist device implantation. J Card Surg, 2022, 37(8): 2297-2306.
- 25. Seretny J, Pidborochynski T, Buchholz H, et al. Decreasing driveline infections in patients supported on ventricular assist devices: A care pathway approach. BMJ Open Qual, 2022, 11(2): e001815.
- 26. Martin BJ, Luc JGY, Maruyama M, et al. Driveline site is not a predictor of infection after ventricular assist device implantation. ASAIO J, 2018, 64(5): 616-622.
- 27. Zinoviev R, Lippincott CK, Keller SC, et al. In full flow: Left ventricular assist device infections in the modern era. Open Forum Infect Dis, 2020, 7(5): ofaa124.
- 28. Pavlovic NV, Randell T, Madeira T, et al. Risk of left ventricular assist device driveline infection: A systematic literature review. Heart Lung, 2019, 48(2): 90-104.
- 29. Boyle AJ, Jorde UP, Sun B, et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: An analysis of more than 900 HeartMateⅡ outpatients. J Am Coll Cardiol, 2014, 63(9): 880-888.
- 30. Eisen HJ. Left ventricular assist devices (LVADS): History, clinical application and complications. Korean Circ J, 2019, 49(7): 568-585.
- 31. Kataria R, Jorde UP. Gastrointestinal bleeding during continuous-flow left ventricular assist device support: State of the field. Cardiol Rev, 2019, 27(1): 8-13.
- 32. Carlson LA, Maynes EJ, Choi JH, et al. Characteristics and outcomes of gastrointestinal bleeding in patients with continuous-flow left ventricular assist devices: A systematic review. Artif Organs, 2020, 44(11): 1150-1161.
- 33. Converse MP, Sobhanian M, Taber DJ, et al. Effect of angiotensin Ⅱ inhibitors on gastrointestinal bleeding in patients with left ventricular assist devices. J Am Coll Cardiol, 2019, 73(14): 1769-1778.
- 34. Namdaran P, Zikos TA, Pan JY, et al. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J, 2020, 66(6): 645-651.
- 35. Wilson TJ, Baran DA, Herre JM, et al. Gastrointestinal bleeding rates in left ventricular assist device population reduced with octreotide utilization. ASAIO J, 2021, 67(9): 989-994.
- 36. Cornwell WK, Ambardekar AV, Tran T, et al. Stroke incidence and impact of continuous-flow left ventricular assist devices on cerebrovascular physiology. Stroke, 2019, 50(2): 542-548.
- 37. Frontera JA, Starling R, Cho SM, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant, 2017, 36(6): 673-683.
- 38. Chiang YP, Cox D, Schroder JN, et al. Stroke risk following implantation of current generation centrifugal flow left ventricular assist devices. J Card Surg, 2020, 35(2): 383-389.
- 39. Giede-Jeppe A, Roeder SS, Macha K, et al. Management of stroke in patients with left ventricular assist devices. J Stroke Cerebrovasc Dis, 2020, 29(11): 105166.
- 40. Chivukula VK, Beckman JA, Prisco AR, et al. Left ventricular assist device inflow cannula angle and thrombosis risk. Circ Heart Fail, 2018, 11(4): e004325.
- 41. Chivukula VK, Beckman JA, Li S, et al. Left ventricular assist device inflow cannula insertion depth influences thrombosis risk. ASAIO J, 2020, 66(7): 766-773.
- 42. May-Newman K, Montes R, Campos J, et al. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs, 2019, 43(9): 834-848.
- 43. Gopinathannair R, Cornwell WK, Dukes JW, et al. Device therapy and arrhythmia management in left ventricular assist device recipients: A scientific statement from the American Heart Association. Circulation, 2019, 139(20): e967-e989.
- 44. Gulletta S, Scandroglio AM, Pannone L, et al. Clinical characteristics and outcomes of patients with ventricular arrhythmias after continuous-flow left ventricular assist device implant. Artif Organs, 2022, 46(8): 1608-1615.
- 45. Frankfurter C, Molinero M, Vishram-Nielsen JKK, et al. Predicting the risk of right ventricular failure in patients undergoing left ventricular assist device implantation: A systematic review. Circ Heart Fail, 2020, 13(10): e006994.
- 46. Gudejko MD, Gebhardt BR, Zahedi F, et al. Intraoperative hemodynamic and echocardiographic measurements associated with severe right ventricular failure after left ventricular assist device implantation. Anesth Analg, 2019, 128(1): 25-32.
- 47. Raymer DS, Moreno JD, Sintek MA, et al. The combination of tricuspid annular plane systolic excursion and heartmaterisk score predicts right ventricular failure after left ventricular assist device implantation. ASAIO J, 2019, 65(3): 247-251.
- 48. Lo Coco V, De Piero ME, Massimi G, et al. Right ventricular failure after left ventricular assist device implantation: A review of the literature. J Thorac Dis, 2021, 13(2): 1256-1269.
- 49. Ali HR, Kiernan MS, Choudhary G, et al. Right ventricular failure post-implantation of left ventricular assist device: Prevalence, pathophysiology, and predictors. ASAIO J, 2020, 66(6): 610-619.
- 50. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant, 2015, 34(9): 1123-1130.
- 51. Gulati G, Grandin EW, Kennedy K, et al. Preimplant phosphodiesterase-5 inhibitor use is associated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail, 2019, 12(6): e005537.
- 52. Pasrija C, Sawan MA, Sorensen E, et al. Less invasive left ventricular assist device implantation may reduce right ventricular failure. Interact Cardiovasc Thorac Surg, 2019, 29(4): 592-598.
- 53. Pasrija C, Sawan MA, Sorensen E, et al. Less invasive approach to left ventricular assist device implantation may improve survival in high-risk patients. Innovations (Phila), 2020, 15(3): 243-250.
- 54. Bennett MK, Adatya S. Blood pressure management in mechanical circulatory support. J Thorac Dis, 2015, 7(12): 2125-2128.
- 55. Paprotny M, Ruschitzka F, Lüders B, et al. Pulsatile arterial blood pressure mimicking aortic valve opening during continuous-flow LVAD support: A case report. J Cardiothorac Surg, 2019, 14(1): 219.
- 56. Jorde UP, Saeed O, Koehl D, et al. The Society of Thoracic Surgeons intermacs 2023 annual report: Focus on magnetically levitated devices. Ann Thorac Surg, 2024, 117(1): 33-44.
- 57. Schmitto JD, Hanke JS, Rojas SV, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMateⅢ). J Heart Lung Transplant, 2015, 34(6): 858-860.
- 58. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—Final report. N Engl J Med, 2019, 380(17): 1618-1627.
- 59. Mehra MR, Goldstein DJ, Cleveland JC, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA, 2022, 328(12): 1233-1242.
- 60. Lemaire A, Anderson MB, Lee LY, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac Surg, 2014, 97(1): 133-138.
- 61. Pahuja M, Yerasi C, Lam PH, et al. Review of pathophysiology of cardiogenic shock and escalation of mechanical circulatory support devices. Curr Cardiol Rep, 2023, 25(4): 213-227.
- 62. 胡盛寿, 王现强, 周星彤. 心室辅助装置治疗心力衰竭—现状和下一步思考. 中国循环杂志, 2023, 38(8): 791-793.Hu SS, Wang XQ, Zhou XT. Ventricular assist devices for the treatment of heart failure: Current state and future prospects. Chin Circ J, 2023, 38(8): 791-793.
- 63. Bartoli CR, Kang J, Zhang D, et al. Left ventricular assist device design reduces von willebrand factor degradation: A comparative study between the HeartMateⅡ and the EVAHEART left ventricular assist system. Ann Thorac Surg, 2017, 103(4): 1239-1244.
- 64. Zayat R, Moza A, Grottke O, et al. In vitro comparison of the hemocompatibility of two centrifugal left ventricular assist devices. J Thorac Cardiovasc Surg, 2019, 157(2): 591-599.
- 65. Zhang J, Chen Z, Griffith BP, et al. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMateⅡ pumps. Int J Artif Organs, 2020, 43(10): 653-662.
- 66. Li Y, Wang H, Xi Y, et al. A new mathematical numerical model to evaluate the risk of thrombosis in three clinical ventricular assist devices. Bioengineering (Basel), 2022, 9(6): 235.
- 67. Wang W, Song Y, Zhang Y, et al. Short-term effect of HeartCon left ventricular assist device on the treatment of 20 adult patients with end-stage heart failure. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2022, 34(12): 1258-1262.
- 68. Chen LW, Wu QS, Dai XF, et al. Early results of left ventricular assist device implantation for the treatment of heart failure. Zhonghua Yi Xue Za Zhi, 2023, 103(12): 920-923.
- 69. Fang P, Yang Y, Wei X, et al. Preclinical evaluation of the fluid dynamics and hemocompatibility of the Corheart 6 left ventricular assist device. Artif Organs, 2023, 47(6): 951-960.
- 70. Horie H, Isoyama T, Ishiyama K. Design of an innovative wireless left ventricular assist device driven by either extracorporeal magnets or an intracorporeal battery pack. ASAIO J, 2023, 69(2): e73-e79.
- 71. Au SLC, McCormick D, Lever N, et al. Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy. Artif Organs, 2020, 44(9): 955-967.
- 72. Karim ML, Bosnjak AM, McLaughlin J, et al. Transcutaneous pulsed RF energy transfer mitigates tissue heating in high power demand implanted device applications: In vivo and in silico models results. Sensors (Basel), 2022, 22(20): 7775.
- 73. Sciaccaluga C, Ghionzoli N, Mandoli GE, et al. Biomarkers in patients with left ventricular assist device: An insight on current evidence. Biomolecules, 2022, 12(2): 334.
- 74. Zhang B, Guo S, Fu Z, et al. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: A meta-analysis. Heart Fail Rev, 2022, 27(4): 1053-1061.
- 75. Wert L, Chatterjee A, Dogan G, et al. Minimally invasive surgery improves outcome of left ventricular assist device surgery in cardiogenic shock. J Thorac Dis, 2018, 10(Suppl 15): S1696-S1702.
- 76. Saeed D, Muslem R, Rasheed M, et al. Less invasive surgical implant strategy and right heart failure after LVAD implantation. J Heart Lung Transplant, 2021, 40(4): 289-297.
- 77. 宋述军, 彭燕, 沙次文, 等. 交流磁流体推进血液驱动装置的初步研究. 中国生物医学工程学报, 2006, 25(5): 557-562.Song SJ, Peng Y, Sha CW, et al. Fundamental study of AC magnetohydrodynamic blood driver. Chin J Biomed Eng, 2006, 25(5): 557-562.
- 78. 《中国心血管健康与疾病报告2022》编写组. 《中国心血管健康与疾病报告2022》要点解读. 中国心血管杂志, 2023, 28(4): 297-312.Committee of the Report on Cardiovascular Health and Diseases in China. Interpretation of report on cardiovascular health and diseases in China 2022. Chin J Cardiovasc Med, 2023, 28(4): 297-312.
- 79. Li P, Wu T, Hsu PL, et al. 30-day in vivo study of a fully maglev extracorporeal ventricular assist device. Artif Organs, 2022, 46(11): 2171-2178.
- 80. Li P, Wu L, Dong N. First experience of magnetically levitated extracorporeal left ventricular assist device for cardiogenic shock in China. ESC Heart Fail, 2022, 9(2): 1471-1473.