Glaucoma is one of blind causing diseases. The cup-to-disc ratio is the main basis for glaucoma screening. Therefore, it is of great significance to precisely segment the optic cup and disc. In this article, an optic cup and disc segmentation model based on the linear attention and dual attention is proposed. Firstly, the region of interest is located and cropped according to the characteristics of the optic disc. Secondly, linear attention residual network-34 (ResNet-34) is introduced as a feature extraction network. Finally, channel and spatial dual attention weights are generated by the linear attention output features, which are used to calibrate feature map in the decoder to obtain the optic cup and disc segmentation image. Experimental results show that the intersection over union of the optic disc and cup in Retinal Image Dataset for Optic Nerve Head Segmentation (DRISHTI-GS) dataset are 0.962 3 and 0.856 4, respectively, and the intersection over union of the optic disc and cup in retinal image database for optic nerve evaluation (RIM-ONE-V3) are 0.956 3 and 0.784 4, respectively. The proposed model is better than the comparison algorithm and has certain medical value in the early screening of glaucoma. In addition, this article uses knowledge distillation technology to generate two smaller models, which is beneficial to apply the models to embedded device.
To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging (MRI), this paper proposes a lightweight dilated parallel convolution U-Net (DPU-Net) to decrease the quantity of network parameters and the number of floating-point operations. Additionally, a multi-scale adaptation vector knowledge distillation (MAVKD) training strategy is employed to extract latent knowledge from the teacher network, thereby enhancing the segmentation accuracy of DPU-Net. The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters. The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations. When applying this network to the public dataset of the automatic cardiac diagnosis challenge (ACDC), the dice coefficient reaches 91.26%. The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy, providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.