1. |
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications[J/OL]. Commun Biol, 2021, 4(1): 245[2021-02-24]. https://pubmed.ncbi.nlm.nih.gov/33627778/. DOI: 10.1038/s42003-021-01765-3.
|
2. |
Huang J, Wang X, Li N, et al. YY1 lactylation aggravates autoimmune uveitis by enhancing microglial functions via inflammatory genes[J/OL]. Adv Sci (Weinh), 2024, 11(19): e2308031[2024-03-17]. https://pubmed.ncbi.nlm.nih.gov/38493498/. DOI: 10.1002/advs.202308031.
|
3. |
Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas[J]. J Neurosci Res, 2015, 93(7): 1079-1092. DOI: 10.1002/jnr.23583.
|
4. |
Mori S, Kurimoto T, Miki A, et al. Aqp9 gene deletion enhances retinal ganglion cell (RGC) death and dysfunction induced by optic nerve crush: evidence that aquaporin 9 acts as an astrocyte-to-neuron lactate shuttle in concert with monocarboxylate transporters to support RGC function and survival[J]. Mol Neurobiol, 2020, 57(11): 4530-4548. DOI: 10.1007/s12035-020-02030-0.
|
5. |
Arai-Okuda M, Murai Y, Maeda H, et al. Potentially compromised systemic and local lactate metabolic balance in glaucoma, which could increase retinal glucose and glutamate concentrations[J/OL]. Sci Rep, 2024, 14(1): 3683[2024-02-14]. https://pubmed.ncbi.nlm.nih.gov/38355836/. DOI: 10.1038/s41598-024-54383-4.
|
6. |
Song J, Lee K, Park SW, et al. Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3747-3754. DOI: 10.1167/iovs.18-23892.
|
7. |
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218. DOI: 10.1016/j.tibs.2015.12.001.
|
8. |
Kanow MA, Giarmarco MM, Jankowski CS, et al. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye[J/OL]. Elife, 2017, 6: e28899[2017-09-13]. https://pubmed.ncbi.nlm.nih.gov/28901286/. DOI: 10.7554/eLife.28899.
|
9. |
Lindsay KJ, Du J, Sloat SR, et al. Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina[J]. Proc Natl Acad Sci USA, 2014, 111(43): 15579-15584. DOI: 10.1073/pnas.1412441111.
|
10. |
Vohra R, Kolko M. Neuroprotection of the inner retina: Muller cells and lactate[J]. Neural Regen Res, 2018, 13(10): 1741-1742. DOI: 10.4103/1673-5374.238612.
|
11. |
Felmlee MA, Jones RS, Rodriguez-Cruz V, et al. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease[J]. Pharmacol Rev, 2020, 72(2): 466-485. DOI: 10.1124/pr.119.018762.
|
12. |
Han J, Kinoshita J, Bisetto S, et al. Role of monocarboxylate transporters in regulating metabolic homeostasis in the outer retina: insight gained from cell-specific Bsg deletion[J]. FASEB J, 2020, 34(4): 5401-5419. DOI: 10.1096/fj.201902961R.
|
13. |
Akashi A, Miki A, Kanamori A, et al. Aquaporin 9 expression is required for l-lactate to maintain retinal neuronal survival[J]. Neurosci Lett, 2015, 589: 185-190. DOI: 10.1016/j.neulet.2015.01.063.
|
14. |
Philp NJ, Ochrietor JD, Rudoy C, et al. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse[J]. Invest Ophthalmol Vis Sci, 2003, 44(3): 1305-1311. DOI: 10.1167/iovs.02-0552.
|
15. |
Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners[J]. J Biochem, 2016, 159(5): 481-490. DOI: 10.1093/jb/mvv127.
|
16. |
Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease[J/OL]. Signal Transduct Target Ther, 2022, 7(1): 305[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/36050306/. DOI: 10.1038/s41392-022-01151-3.
|
17. |
Hoque R, Farooq A, Ghani A, et al. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity[J]. Gastroenterology, 2014, 146(7): 1763-1774. DOI: 10.1053/j.gastro.2014.03.014.
|
18. |
Wang X, Fan W, Li N, et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2[J]. Genome Biol, 2023, 24(1): 87[2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/37085894/. DOI: 10.1186/s13059-023-02931-y.
|
19. |
Campochiaro PA. Ocular neovascularization[J]. J Mol Med (Berl), 2013, 91(3): 311-321. DOI: 10.1007/s00109-013-0993-5.
|
20. |
Shinojima A, Lee D, Tsubota K, et al. Retinal diseases regulated by hypoxia-basic and clinical perspectives: a comprehensive review[J/OL]. J Clin Med, 2021, 10(23): 5496[2021-11-24]. https://pubmed.ncbi.nlm.nih.gov/34884197/. DOI: 10.3390/jcm10235496.
|
21. |
Singh C. Metabolism and vascular retinopathies: current perspectives and future directions[J]. Diagnostics (Basel), 2022, 12(4): 903[2022-04-05]. https://pubmed.ncbi.nlm.nih.gov/35453951/. DOI: 10.3390/diagnostics12040903.
|
22. |
Miller JW, Le Couter J, Strauss EC, et al. Vascular endothelial growth factor a in intraocular vascular disease[J]. Ophthalmology, 2013, 120(1): 106-114. DOI: 10.1016/j.ophtha.2012.07.038.
|
23. |
De Saedeleer CJ, Copetti T, Porporato PE, et al. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells[J]. PLoS One, 2012, 7(10): e46571[2012-10-17]. https://pubmed.ncbi.nlm.nih.gov/23082126/. DOI: 10.1371/journal.pone.0046571.
|
24. |
Yokosako K, Mimura T, Funatsu H, et al. Glycolysis in patients with age-related macular degeneration[J]. Open Ophthalmol J, 2014, 8: 39-47. DOI: 10.2174/1874364101408010039.
|
25. |
Barba I, Garcia-Ramirez M, Hernandez C, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor[J]. Invest Ophthalmol Vis Sci, 2010, 51(9): 4416-4421. DOI: 10.1167/iovs.10-5348.
|
26. |
Simsek IB, Artunay O. Evaluation of biochemical composition of vitreous of eyes of diabetic patients using proton magnetic resonance spectroscopy[J]. Curr Eye Res, 2017, 42(5): 754-758. DOI: 10.1080/02713683.2016.1242754.
|
27. |
Xu J, Zhang Y, Gan R, et al. Identification and validation of lactate metabolism-related genes in oxygen-induced retinopathy[J/OL]. Sci Rep, 2023, 13(1): 13319[2023-08-16]. https://pubmed.ncbi.nlm.nih.gov/37587267/. DOI: 10.1038/s41598-023-40492-z.
|
28. |
Shen Z, Jiang L, Yuan Y, et al. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury[J]. Cns Neurosci Ther, 2015, 21(3): 271-279. DOI: 10.1111/cns.12362.
|
29. |
Madaan A, Chaudhari P, Nadeau-Vallee M, et al. Müller cell-localized G-protein-coupled receptor 81 (hydroxycarboxylic acid receptor 1) regulates inner retinal vasculature via norrin/wnt pathways[J]. Am J Pathol, 2019, 189(9): 1878-1896. DOI: 10.1016/j.ajpath.2019.05.016.
|
30. |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. DOI: 10.1038/s41586-019-1678-1.
|
31. |
Lauritzen KH, Morland C, Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism[J]. Cereb Cortex, 2014, 24(10): 2784-2795. DOI: 10.1093/cercor/bht136.
|
32. |
Morland C, Lauritzen KH, Puchades M, et al. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain[J]. J Neurosci Res, 2015, 93(7): 1045-1055. DOI: 10.1002/jnr.23593.
|
33. |
Kolko M, Vosborg F, Henriksen UL, et al. Lactate transport and receptor actions in retina: potential roles in retinal function and disease[J]. Neurochem Res, 2016, 41(6): 1229-1236. DOI: 10.1007/s11064-015-1792-x.
|
34. |
Zhu D, Zhou J, Xu X. Influence of lactic acid on differential expression of vascular endothelial growth factor and pigment epithelium-derived factor in explants of rat retina[J]. Curr Eye Res, 2012, 37(11): 1025-1029. DOI: 10.3109/02713683.2012.695853.
|
35. |
Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying Th17 differentiation in experimental autoimmune uveitis[J/OL]. Sci Adv, 2023, 9(42): 4655[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37851814/. DOI: 10.1126/sciadv.adh4655.
|
36. |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J/OL]. Sci Transl Med, 2020, 12(555): 1371[2020-08-05]. https://pubmed.ncbi.nlm.nih.gov/32759274/. DOI: 10.1126/scitranslmed.aay1371.
|
37. |
Zou Y, Jiang J, Li Y, et al. Quercetin regulates microglia M1/M2 polarization and alleviates retinal inflammation via ERK/STAT3 pathway[J/OL]. Inflammation, 2024: E1(2024-07-31)[2024-02-27]. https://pubmed.ncbi.nlm.nih.gov/38411775/. DOI: 10.1007/s10753-024-01997-5. [published online ahead of print].
|
38. |
Llorián-Salvador M, de la Fuente AG, McMurran CE, et al. Regulatory T cells limit age-associated retinal inflammation and neurodegeneration[J/OL]. Mol Neurodegener, 2024, 19(1): 32[2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/38581053/. DOI: 10.1186/s13024-024-00724-w.
|
39. |
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665. DOI: 10.1111/bph.13139.
|
40. |
Noe JT, Rendon BE, Geller AE, et al. Lactate supports a metabolic-epigenetic link in macrophage polarization[J/OL]. Sci Adv, 2021, 7(46): 8602[2021-11-12]. https://pubmed.ncbi.nlm.nih.gov/34767443/. DOI: 10.1126/sciadv.abi8602.
|
41. |
Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease[J]. Nat Rev Neurosci, 2014, 15(5): 300-312. DOI: 10.1038/nrn3722.
|
42. |
Kong L, Wang Z, Liang X, et al. Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3[J/OL]. J Neuroinflammation, 2019, 16(1): 240[2019-11-28]. https://pubmed.ncbi.nlm.nih.gov/31779643/. DOI: 10.1186/s12974-019-1648-4.
|
43. |
Yang K, Xu J, Fan M, et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-kappaB activation via GPR81-mediated signaling[J/OL]. Front Immunol, 2020, 11: 587913[2020-10-06]. https://pubmed.ncbi.nlm.nih.gov/33123172/. DOI: 10.3389/fimmu.2020.587913.
|
44. |
Yang X, Yu XW, Zhang DD, et al. Blood-retinal barrier as a converging pivot in understanding the initiation and development of retinal diseases[J]. Chin Med J (Engl), 2020, 133(21): 2586-2594. DOI: 10.1097/CM9.0000000000001015.
|
45. |
Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions[J/OL]. PLoS Biol, 2015, 13(7): e1002202[2015-07-16]. https://pubmed.ncbi.nlm.nih.gov/26181372/. DOI: 10.1371/journal.pbio.1002202.
|
46. |
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation[J]. Cytokine Growth Factor Rev, 2022, 68: 81-92. DOI: 10.1016/j.cytogfr.2022.11.001.
|
47. |
Lambert V, Hansen S, Schoumacher M, et al. Pyruvate dehydrogenase kinase/lactate axis: a therapeutic target for neovascular age-related macular degeneration identified by metabolomics[J]. J Mol Med (Berl), 2020, 98(12): 1737-1751. DOI: 10.1007/s00109-020-01994-9.
|
48. |
Ait-Ali N, Fridlich R, Millet-Puel G, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis[J]. Cell, 2015, 161(4): 817-832. DOI: 10.1016/j.cell.2015.03.023.
|
49. |
Renner O, Mayer M, Leischner C, et al. Systematic review of gossypol/AT-101 in cancer clinical trials[J/OL]. Pharmaceuticals (Basel), 2022, 15(2): 144[2022-01-26]. https://pubmed.ncbi.nlm.nih.gov/35215257/. DOI: 10.3390/ph15020144.
|
50. |
Halford S, Veal GJ, Wedge SR, et al. A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer[J]. Clin Cancer Res, 2023, 29(8): 1429-1439. DOI: 10.1158/1078-0432.CCR-22-2263.
|
51. |
Sun L, Jiang Y, Yan X, et al. Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells[J/OL]. Exp Cell Res, 2021, 406(1): 112755[2021-09-01]. https://pubmed.ncbi.nlm.nih.gov/34332981/. DOI: 10.1016/j.yexcr.2021.112755.
|
52. |
Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy[J]. Genes Dis, 2022, 9(1): 62-79. DOI: 10.1016/j.gendis.2021.02.009.
|
53. |
Nguyen XT, Moekotte L, Plomp AS, et al. Retinitis pigmentosa: current clinical management and emerging therapies[J/OL]. Int J Mol Sci, 2023, 24(8): 7481[2023-04-19]. https://pubmed.ncbi.nlm.nih.gov/37108642/. DOI: 10.3390/ijms24087481.
|
54. |
Xue Y. Txnip gene therapy of retinitis pigmentosa improves cone health[J]. Adv Exp Med Biol, 2023, 1415: 143-146. DOI: 10.1007/978-3-031-27681-1_22.
|
55. |
Nelson TS, Simpson C, Dyka F, et al. A modified Arrestin1 increases lactate production in the retina and slows retinal degeneration[J]. Hum Gene Ther, 2022, 33(13-14): 695-707. DOI: 10.1089/hum.2021.272.
|