1. |
Palanker D. Electronic retinal prostheses[J/OL]. Cold Spring Harb Perspect Med, 2023, 13(8): a041525[2023-08-01]. https://pubmed.ncbi.nlm.nih.gov/36781222/. DOI: 10.1101/cshperspect.a041525.
|
2. |
Guymer RH, Campbell TG. Age-related macular degeneration[J]. Lancet, 2023, 401(10386): 1459-1472. DOI: 10.1016/S0140-6736(22)02609-5.
|
3. |
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J/OL]. Lancet Glob Health, 2014, 2(2): e106-e116[2014-01-03]. https://pubmed.ncbi.nlm.nih.gov/25104651/. DOI: 10.1016/S2214-109X(13)70145-1.
|
4. |
Ye H, Zhang Q, Liu X, et al. Prevalence of age-related macular degeneration in an elderly urban Chinese population in China: The Jiangning Eye Study[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6374-6380. DOI: 10.1167/iovs.14-14899.
|
5. |
Girgis S, Lee LR. Treatment of dry age-related macular degeneration: a review[J]. Clin Exp Ophthalmol, 2023, 51(8): 835-852. DOI: 10.1111/ceo.14294.
|
6. |
Han S, Chen J, Hua J, et al. MITF protects against oxidative damage-induced retinal degeneration by regulating the NRF2 pathway in the retinal pigment epithelium[J/OL]. Redox Biol, 2020, 34: 101537[2020-04-16]. https://pubmed.ncbi.nlm.nih.gov/32361183/. DOI: 10.1016/j.redox.2020.101537.
|
7. |
Tang Y, Kang Y, Zhang X, et al. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration[J]. J Control Release, 2023, 357: 356-370. DOI: 10.1016/j.jconrel.2023.04.003.
|
8. |
Li F, Lang F, Zhang H, et al. Apigenin alleviates endotoxin-induced myocardial toxicity by modulating inflammation, oxidative stress, and autophagy[J/OL]. Oxid Med Cell Longev, 2017, 2017: 2302896[2017-07-30]. https://pubmed.ncbi.nlm.nih.gov/28828145/. DOI: 10.1155/2017/2302896.
|
9. |
Zhang Y, Yang Y, Yu H, et al. Apigenin protects mouse retina against oxidative damage by regulating the Nrf2 pathway and autophagy[J/OL]. Oxid Med Cell Longev, 2020, 2020: 9420704[2020-05-13]. https://pubmed.ncbi.nlm.nih.gov/32509154/. DOI: 10.1155/2020/9420704.
|
10. |
Wang B, Wang L, Gu S, et al. D609 protects retinal pigmented epithelium as a potential therapy for age-related macular degeneration[J]. Signal Transduct Target Ther, 2020, 5(1): 20. DOI: 10.1038/s41392-020-0122-1.
|
11. |
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease[J]. Prog Retin Eye Res, 2018, 65: 50-76. DOI: 10.1016/j.preteyeres.2018.02.002.
|
12. |
Rhoades W, Dickson D, Do DV. Potential role of lampalizumab for treatment of geographic atrophy[J]. Clin Ophthalmol, 2015, 9: 1049-1056. DOI: 10.2147/opth.S59725.
|
13. |
Anderson DH, Mullins RF, Hageman GS, et al. A role for local inflammation in the formation of drusen in the aging eye[J]. Am J Ophthalmol, 2002, 134(3): 411-431. DOI: 10.1016/s0002-9394(02)01624-0.
|
14. |
Garg A, Nanji K, Tai F, et al. The effect of complement C3 or C5 inhibition on geographic atrophy secondary to age-related macular degeneration: a living systematic review and meta-analysis[J]. Surv Ophthalmol, 2024, 69(3): 349-361. DOI: 10.1016/j.survophthal.2023.11.008.
|
15. |
Danzig CJ, Khanani AM, Loewenstein A. C5 inhibitor avacincaptad pegol treatment for geographic atrophy: a comprehensive review[J]. Immunotherapy, 2024, 29: 1-12. DOI: 10.1080/1750743x.2024.2368342.
|
16. |
Jaffe GJ, Westby K, Csaky KG, et al. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration[J]. Ophthalmology, 2021, 128(4): 576-586. DOI: 10.1016/j.ophtha.2020.08.027.
|
17. |
Khanani AM, Patel SS, Staurenghi G, et al. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial[J]. Lancet, 2023, 402(10411): 1449-1458. DOI: 10.1016/s0140-6736(23)01583-0.
|
18. |
Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration[J]. Ophthalmology, 2014, 121(3): 693-701. DOI: 10.1016/j.ophtha.2013.09.044.
|
19. |
Heier JS, Lad EM, Holz FG, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials[J]. Lancet, 2023, 402(10411): 1434-1448. DOI: 10.1016/s0140-6736(23)01520-9.
|
20. |
Yang P, Shao Z, Besley NA, et al. Risuteganib protects against hydroquinone-induced injury in human RPE cells[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 35. DOI: 10.1167/iovs.61.10.35.
|
21. |
Boyer DS, Gonzalez VH, Kunimoto DY, et al. Safety and efficacy of intravitreal risuteganib for non-exudative AMD: a multicenter, phase 2a, randomized, clinical trial[J]. Ophthalmic Surg Lasers Imaging Retina, 2021, 52(6): 327-335. DOI: 10.3928/23258160-20210528-05.
|
22. |
Lad EM, Boyer DS, Heier JS, et al. Color vision and microperimetry changes in nonexudative age-related macular degeneration after risuteganib treatment: exploratory endpoints in a multicenter phase 2a double-masked, randomized, sham-controlled, crossover clinical trial[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(8): 430-438. DOI: 10.3928/23258160-20220725-02.
|
23. |
Camardo J. The rapamune era of immunosuppression 2003: the journey from the laboratory to clinical transplantation[J]. Transplant Proc, 2003, 35(3): 18-24. DOI: 10.1016/s0041-1345(03)00356-7.
|
24. |
Wong WT, Dresner S, Forooghian F, et al. Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase Ⅰ/Ⅱ clinical trial[J/OL]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2941-2950[2014-04-26]. https://pubmed.ncbi.nlm.nih.gov/23548622/. DOI: 10.1167/iovs.13-11650.
|
25. |
Suri R, Neupane YR, Mehra N, et al. Sirolimus loaded chitosan functionalized poly (lactic-co-glycolic acid) (PLGA) nanoparticles for potential treatment of age-related macular degeneration[J]. Int J Biol Macromol, 2021, 191: 548-559. DOI: 10.1016/j.ijbiomac.2021.09.069.
|
26. |
Mettu PS, Allingham MJ, Cousins SW. Phase 1 clinical trial of elamipretide in dry age-related macular degeneration and noncentral geographic atrophy: ReCLAIM NCGA Study[J/OL]. Ophthalmol Sci, 2022, 2(1): 100086[2021-11-27]. https://pubmed.ncbi.nlm.nih.gov/36246181/. DOI: 10.1016/j.xops.2021.100086.
|
27. |
Bavik C, Henry SH, Zhang Y, et al. Visual cycle modulation as an approach toward preservation of retinal integrity[J/OL]. PLoS One, 2015, 10(5): e0124940[2015-05-13]. https://pubmed.ncbi.nlm.nih.gov/25970164/. DOI: 10.1371/journal.pone.0124940.
|
28. |
Rosenfeld PJ, Dugel PU, Holz FG, et al. Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration[J]. Ophthalmology, 2018, 125(10): 1556-1567. DOI: 10.1016/j.ophtha.2018.03.059.
|
29. |
Sparrow JR, Vollmer-Snarr HR, Zhou J, et al. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation[J]. J Biol Chem, 2003, 278(20): 18207-18213. DOI: 10.1074/jbc.M300457200.
|
30. |
Conley B, O'Shaughnessy J, Prindiville S, et al. Pilot trial of the safety, tolerability, and retinoid levels of N-(4-hydroxyphenyl) retinamide in combination with tamoxifen in patients at high risk for developing invasive breast cancer[J]. J Clin Oncol, 2000, 18(2): 275-283. DOI: 10.1200/jco.2000.18.2.275.
|
31. |
Radu RA, Han Y, Bui TV, et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4393-4401. DOI: 10.1167/iovs.05-0820.
|
32. |
Mata NL, Lichter JB, Vogel R, et al. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration[J]. Retina, 2013, 33(3): 498-507. DOI: 10.1097/IAE.0b013e318265801d.
|
33. |
Ma L, Kaufman Y, Zhang J, et al. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease[J]. J Clin Oncol, 2011, 286(10): 7966-7674. DOI: 10.1074/jbc.M110.178657.
|
34. |
Xu XL, Zhang W, Rao GW. Clinical application and synthesis methods of deuterated drugs[J]. Curr Med Chem, 2023, 30(36): 4096-4129. DOI: 10.2174/0929867330666221122123201.
|
35. |
Kauper K, McGovern C, Sherman S, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7484-7491. DOI: 10.1167/iovs.12-9970.
|
36. |
Wen R, Tao W, Li Y, et al. CNTF and retina[J]. Prog Retin Eye Res, 2012, 31(2): 136-151. DOI: 10.1016/j.preteyeres.2011.11.005.
|
37. |
Zhang K, Hopkins JJ, Heier JS, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration[J]. Proc Natl Acad Sci USA, 2011, 108(15): 6241-6245. DOI: 10.1073/pnas.1018987108.
|
38. |
Kuppermann BD, Patel SS, Boyer DS, et al. Phase 2 study of safety and efficacy of brimonidine drug delivery system (BRIMO DDS) generation 1 in patients with geographic atrophy secondary to age-related macular degenetation[J]. Retina, 2021, 41(1): 144-155. DOI: 10.1097/iae.0000000000002789.
|
39. |
Freeman WR, Bandello F, Souied E, et al. Randomized phase Ⅱb study of brimonidine drug delivery system generation 2 for geographic atrophy in age-related macular degeneration[J]. Ophthalmol Retina, 2023, 7(7): 573-585. DOI: 10.1016/j.oret.2023.03.001.
|
40. |
Jiang Y, Fu X, Shao M, et al. Eyedrop delivery of therapeutic proteins with zwitterionic polymers to treat dry age-related macular degeneration[J/OL]. Biomaterials, 2024, 305: 122429[2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/38150770/. DOI: 10.1016/j.biomaterials.2023.122429.
|
41. |
Trincão-Marques J, Ayton LN, Hickey DG, et al. Gene and cell therapy for age-related macular degeneration: a review[J]. Surv Ophthalmol, 2024, 69(5): 665-676. DOI: 10.1016/j.survophthal.2024.05.002.
|
42. |
Maeda T, Sugita S, Kurimoto Y, et al. Trends of stem cell therapies in age-related macular degeneration[J/OL]. J Clin Med, 2021, 10(8): 1785[2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/33923985/. DOI: 10.3390/jcm10081785.
|
43. |
Ho AC, Chang TS, Samuel M, et al. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration[J]. Am J Ophthalmol, 2017, 179: 67-80. DOI: 10.1016/j.ajo.2017.04.006.
|
44. |
Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration[J/OL]. Sci Transl Med, 2018, 10(435): eaao4097[2018-04-04]. https://pubmed.ncbi.nlm.nih.gov/29618560/. DOI: 10.1126/scitranslmed.aao4097.
|
45. |
Hashmi JT, Huang YY, Sharma SK, et al. Effect of pulsing in low-level light therapy[J]. Lasers Surg Med, 2010, 42(6): 450-466. DOI: 10.1002/lsm.20950.
|
46. |
Albarracin R, Eells J, Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 3582-3592. DOI: 10.1167/iovs.10-6664.
|
47. |
Ivandic BT, Ivandic T. Low-level laser therapy improves vision in patients with age-related macular degeneration[J]. Photomed Laser Surg, 2008, 26(3): 241-245. DOI: 10.1089/pho.2007.2132.
|
48. |
Merry GF, Munk MR, Dotson RS, et al. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration[J/OL]. Acta Ophthalmologica, 2016, 95(4): e270-e277[2016-12-18]. https://pubmed.ncbi.nlm.nih.gov/27989012/. DOI: 10.1111/aos.13354.
|
49. |
Markowitz SN, Devenyi RG, Munk MR, et al. A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry age-related macular degenetation[J]. Retina, 2020, 40(8): 1471-1482. DOI: 10.1097/iae.0000000000002632.
|
50. |
Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy[J/OL]. Front Immunol, 2022, 13: 975803[2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/36032092/. DOI: 10.3389/fimmu.2022.975803.
|
51. |
Cabral de Guimaraes TA, Daich Varela M, Georgiou M, et al. Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions[J]. Br J Ophthalmol, 2022, 106(3): 297-304. DOI: 10.1136/bjophthalmol-2020-318452.
|
52. |
Dreismann AK, McClements ME, Barnard AR, et al. Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells[J]. Gene Ther, 2021, 28(5): 265-276. DOI: 10.1038/s41434-021-00239-9.
|
53. |
Khanani AM, Thomas MJ, Aziz AA, et al. Review of gene therapies for age-related macular degeneration[J]. Eye (Lond), 2022, 36(2): 303-311. DOI: 10.1038/s41433-021-01842-1.
|
54. |
Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD-from hypothesis to clinical trials[J]. Exp Eye Res, 2019, 184: 266-277. DOI: 10.1016/j.exer.2019.05.006.
|
55. |
Fusco A, Cashman SM, Ramo K, et al. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration[J/OL]. PLoS One, 2011, 6(4): e19078[2011-04-28]. https://pubmed.ncbi.nlm.nih.gov/21552568/. DOI: 10.1371/journal.pone.0019078.
|
56. |
Cheng DL, Greenberg PB, Borton DA. Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives[J]. Curr Eye Res, 2017, 42(3): 334-347. DOI: 10.1080/02713683.2016.1270326.
|
57. |
Palanker D, Le Mer Y, Mohand-Said S, et al. Photovoltaic restoration of central vision in atrophic age-related macular degeneration[J]. Ophthalmology, 2020, 127(8): 1097-1104. DOI: 10.1016/j.ophtha.2020.02.024.
|
58. |
Palanker D, Le Mer Y, Mohand-Said S, et al. Simultaneous perception of prosthetic and natural vision in AMD patients[J]. Nat Commun, 2022, 13(1): 513. DOI: 10.1038/s41467-022-28125-x.
|
59. |
Coleman DJ, Silverman RH, Rondeau MJ, et al. Age-related macular degeneration: choroidal ischaemia?[J]. Br J Ophthalmol, 2013, 97(8): 1020-1023. DOI: 10.1136/bjophthalmol-2013-303143.
|
60. |
Lylyk I, Bleise C, Lylyk PN, et al. Ophthalmic artery angioplasty for age-related macular degeneration[J]. J Neurointerv Surg, 2022, 14(10): 968-972. DOI: 10.1136/neurintsurg-2021-018222.
|
61. |
冯思齐, 周欣, 张元钟, 等. 驻景丸加减方治疗肝肾不足型干性年龄相关性黄斑变性的临床研究[J]. 南京中医药大学学报, 2024, 40(5): 521-526. DOI: 10.14148/j.issn.1672-0482.2024.0521.Feng SQ, Zhou X, Zhang YZ, et al. Clinical study on the treatment of dry age-related macular degeneration of liver and kidney insufficiency type with modified Zhujing pills[J]. J Nanjing UnivTradit Chin Medicine, 2024, 40(5): 521-526. DOI: 10.14148/j.issn.1672-0482.2024.0521.
|
62. |
王漫峤, 邵彦, 李筱荣. 藏花醛治疗干性年龄相关性黄斑变性机制的研究进展[J]. 中国中医眼科杂志, 2024, 34(3): 275-279. DOI: 10.3969/j.issn. zgzyykzz.2024.03.016. DOI: 10.3969/j.issn.zgzyykzz.2024.03.016.Wang MQ, Shao Y, Li XR. Research progress on the mechanisms of safranal in treating dry age-related macular degeneration[J]. Chinese Journal of Chinese Ophthalmology, 2024, 34(3): 275-279. DOI: 10.3969/j.issn. zgzyykzz.2024.03.016. DOI: 10.3969/j.issn.zgzyykzz.2024.03.016.
|
63. |
王龙龙, 刘蓓蓓. 养血益睛汤治疗早期干性年龄相关性黄斑变性疗效观察[J]. 安徽中医药大学学报, 2021, 40(5): 24-27. DOI: 10.14148/j.issn.2095-7246.2021.05.007.Wang LL, Liu BB. Clinical effect of Yangxue Yij ing decoction in treatment of early-stage dry age-related macular degeneration[J]. J Anhui Univ Chinese Med, 2021, 40(5): 24-27. DOI: 10.14148/j.issn.2095-7246.2021.05.007.
|
64. |
梁振华. 增视明目汤治疗干性年龄相关性黄斑变性(肝肾阴虚证)的临床疗效[J]. 中西医结合心血管病电子杂志, 2020, 8(12): 158. DOI: 10.16282/j.cnki.cn11-9336/r.2020.12.142.Liang ZH. Clinical effect of Zengshi Mingmu decoction on dry age-related macular degeneration (syndrome of Yin deficiency of liver and kidney)[J]. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicine(Electronic), 2020, 8(12): 158. DOI: 10.16282/j.cnki.cn11-9336/r.2020.12.142.
|
65. |
李雅萍, 吴利龙, 孙洋, 等. 加味十全明目片治疗干性年龄相关性黄斑变性50眼临床观察[J]. 湖南中医杂志, 2018, 34(12): 59-61. DOI: 10.16808/j.cnki.issn1003-7705.2018.12.025.Li YP, Wu LL, Sun Y, et al. Clinical observation of 50 eyes of dry age-related macular degeneration treated with modified Shianyu Mingmu tablet[J]. Hunan Journal of Traditional Chinese Medicine, 2018, 34(12): 59-61. DOI: 10.16808/j.cnki.issn1003-7705.2018.12.025.
|