- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China;
Intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs is the main treatment for diabetic macular edema (DME), however, 30% of patients still respond poorly to its treatment. At present, imaging markers that can indicate the prognosis of anti-VEGF drug treatment include ischemic index, deep retinal capillary plexus foveal avascular zone area, number of microaneurysms, blood flow density, disorder of the inner retinal layer, outer membrane and/or the degree of damage to the ellipsoid zone, strong reflex foci, intraretinal cysts, subretinal fluid. Biomarkers include high-sensitivity C-reactive protein, neutrophil to lymphocyte ratio, anti-fumarase antibody, intraocular aqueous humor cell adhesion molecule-1, interleukin (IL)-6, IL-8, etc. Understanding these clinical markers that may predict and evaluate the prognosis of anti-VEGF drug therapy can be beneficial to adjust the treatment plan, and more effectively monitor, treat, and manage DME patients.
Citation: Chen Qinyun, Zhang Xuedong. Research progress of evaluating the prognosis of anti-vascular endothelial growth factor drug treatment for diabetic macular edema with clinical markers. Chinese Journal of Ocular Fundus Diseases, 2021, 37(4): 321-326. doi: 10.3760/cma.j.cn511434-20200703-00318 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Busch C, Fraser-Bell S, Iglicki M, et al. Real-world outcomes of non-responding diabetic macular edema treated with continued anti-VEGF therapy versus early switch to dexamethasone implant: 2-year results[J]. Acta Diabetol, 2019, 56(12): 1341-1350. DOI: 10.1007/s00592-019-01416-4. |
2. | Wykoff CC, Elman MJ, Regillo CD, et al. Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials[J]. Ophthalmology, 2016, 123(8): 1716-1721. DOI: 10.1016/j.ophtha.2016.04.004. |
3. | Chatziralli I, Theodossiadis P, Parikakis E, et al. Dexamethasone intravitreal implant in diabetic macular edema: real-life data from a prospective study and predictive factors for visual outcome[J]. Diabetes Ther, 2017, 8(6): 1393-1404. DOI: 10.1007/s13300-017-0332-x. |
4. | Gonzalez VH, Campbell J, Holekamp NM, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data[J]. Am J Ophthalmol, 2016, 172(11): 72-79. DOI: 10.1016/j.ajo.2016.09.012. |
5. | Fan W, Uji A, Wang K, et al. Severity of diabetic macular edema correlates with retinal vascular bed area on ultra-wide field fluorescein andiography[J]. Retina, 2020, 40(6): 1029-1037. DOI: 10.1097/IAE.0000000000002579. |
6. | Bobak B, Thomas H, Tunde P, et al. Ultra-widefield fluorescein angiography as a biomarker for response to switch in therapy[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(12): 771-778. DOI: 10.3928/23258160-20191119-04. |
7. | Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. DOI: 10.1016/j.ophtha.2016.02.022. |
8. | Singer MA, Kermany DS, Waters J, et al. Diabetic macular edema: it is more than just VEGF [J/OL]. F1000Res, 2016, 5: 1000-1019[2016-05-27]. https://pubmed.ncbi.nlm.nih.gov/27303642/. DOI: 10.12688/f1000research.8265.1. |
9. | Patel RD, Messner LV, Teitelbaum B, et al. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema[J]. Am J Ophthalmol, 2013, 155(6): 1038-1044. DOI: 10.1016/j.ajo.2013.01.007. |
10. | Tan CS, Chew MC, van Hemert J, et al. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index[J]. Br J Ophthalmol, 2016, 100(2): 235-239. DOI: 10.1136/bjophthalmol-2015-306652. |
11. | Silva PS, Dela Cruz AJ, Ledesma MG, et al. Diabetic retinopathy severity and peripheral lesions are associated with nonperfusion on ultrawide field angiography[J]. Ophthalmology, 2015, 122(12): 2465-2472. DOI: 10.1016/j.ophtha.2015.07.034. |
12. | Ishibazawa A, Nagaoka T, Yokota H, et al. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6247-6255. DOI: 10.1167/iovs.16-20210. |
13. | Muqit MM, Stanga PE. Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2014, 98(1): 65-72. DOI: 10.1136/bjophthalmol-2013-303941. |
14. | Lee J, Moon BG, Cho AR, et al. Optical coherence tomography angiography of dme and its association with anti-VEGF treatment response[J]. Ophthalmology, 2016, 123(11): 2368-2375. DOI: 10.1016/j.ophtha.2016.07.010. |
15. | Moon BG, Um T, Lee J, et al. Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment[J]. Ophthalmol Retina, 2018, 2(3): 235-243. DOI: 10.1016/j.oret.2017.07.003. |
16. | Busch C, Wakabayashi T, Sato T, et al. Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study[J/OL]. Sci Rep, 2019, 9(1): 1561[2019-02-07]. https://pubmed.ncbi.nlm.nih.gov/30733512/. DOI: 10.1038/s41598-018-38248-1. |
17. | Enders C, Lang GE, Dreyhaupt J, et al. Quantity and quality of image artifacts in optical coherence tomography angiography[J/OL]. PLoS One, 2019, 14(1): e0210505[2019-01-25]. https://pubmed.ncbi.nlm.nih.gov/30682050/. DOI: 10.1371/journal.pone.0210505. |
18. | Deák GG, Schmidt-Erfurth UM, Jampol LM. Correlation of central retinal thickness and visual acuity in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(11): 1215-1216. DOI: 10.1001/jamaophthalmol.2018.3848. |
19. | Zur D, Iglicki M, Sala-Puigdollers A, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant[J/OL]. Acta Ophthalmol, 2020, 98(2): e217-e223[2019-08-18]. https://pubmed.ncbi.nlm.nih.gov/31421028/. DOI: 10.1111/aos.14230. |
20. | Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570. DOI: 10.2337/db14-0782. |
21. | Das R, Spence G, Hogg RE, et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(2): 202-208. DOI: 10.1001/jamaophthalmol.2017.6256. |
22. | Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316. DOI: 10.1001/jamaophthalmol.2014.2350. |
23. | Blindbæk SL, Torp TL, Lundberg K, et al. Noninvasive retinal markers in diabetic retinopathy: advancing from bench towards bedside[J/OL]. J Diabetes Res, 2017, 17(4): 2562759[2017-04-13]. https://pubmed.ncbi.nlm.nih.gov/28491870/. DOI: 10.1155/2017/2562759. |
24. | Chhablani JK, Kim JS, Cheng L, et al. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(10): 1415-1420. DOI: 10.1007/s00417-012-1968-x. |
25. | Maheshwary AS, Oster SF, Yuson RM, et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2010, 150(1): 63-67. DOI: 10.1016/j.ajo.2010.01.039. |
26. | Forooghian F, Stetson PF, Meyer SA, et al. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema[J]. Retina, 2010, 30(1): 63-70. DOI: 10.1097/IAE.0b013e3181bd2c5a. |
27. | Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715-721. DOI: 10.1167/iovs.17-23042. |
28. | Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255. |
29. | Hye SH, Ju BC, Jin YK, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725. |
30. | Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717. DOI: 10.1016/j.ajo.2011.08.041. |
31. | Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT[J/OL]. J Diabetes Res, 2013, 2013: 491835[2013-12-09]. https://pubmed.ncbi.nlm.nih.gov/24386645/. DOI: 10.1155/2013/491835. |
32. | Liu S, Wang D, Chen F. Hyperreflective foci in OCT image as a biomarker of poor prognosis in diabetic macular edema patients treating with Conbercept in China[J/OL]. BMC Ophthalmol, 2019, 19(1): 157[2019-07-23]. https://pubmed.ncbi.nlm.nih.gov/31337360/. DOI: 10.1186/s12886-019-1168-0. |
33. | Yoshitake T, Murakami T, Suzuma K, et al. Hyperreflective foci in the outer retinal layers as a predictor of the functional efficacy of ranibizumab for diabetic macular edema[J/OL]. Sci Rep, 2020, 10(1): 873[2020-01-21]. https://pubmed.ncbi.nlm.nih.gov/31964970/. DOI: 10.1038/s41598-020-57646-y. |
34. | Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J]. Jpn J Ophthalmol, 2018, 62(3): 292-301. DOI: 10.1007/s10384-018-0575-8. |
35. | Nishijima K, Murakami T, Hirashima T, et al. Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema[J]. Retina, 2014, 34(4): 732-740. DOI: 10.1097/IAE.0000000000000005. |
36. | Vujosevic S, Toma C, Villani E, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids[J]. Acta Diabetol, 2020, 57(3): 287-296. DOI: 10.1007/s00592-019-01424-4. |
37. | Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J/OL]. Acta Ophthalmol, 2013, 91(7): e529-536[2013-05-07]. https://pubmed.ncbi.nlm.nih.gov/23647578/. DOI: 10.1111/aos.12153. |
38. | Arf S, Sayman Muslubas I, Hocaoglu M, et al. Spectral domain optical coherence tomography classification of diabetic macular edema: a new proposal to clinical practice[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(6): 1165-1172. DOI: 10.1007/s00417-020-04640-9. |
39. | Zur D, Iglicki M, Busch C, et al. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant[J]. Ophthalmology, 2018, 125(2): 267-275. DOI: 10.1016/j.ophtha.2017.08.031. |
40. | Karst SG, Lammer J, Mitsch C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 56(1): 49-58. DOI: 10.1007/s00417-017-3828-1. |
41. | Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203. DOI: 10.1136/bjophthalmol-2017-310483. |
42. | Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J Ophthalmol, 2017, 181(6): 149-155. DOI: 10.1016/j.ajo.2017.06.026. |
43. | Ashraf M. Functional and anatomic outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J/OL]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1856[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28358951/. DOI: 10.1167/iovs.17-21655. |
44. | Giocanti-Aurégan A, Hrarat L, Qu LM, et al. Functional and anatomical outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 797-800. DOI: 10.1167/iovs.16-20855. |
45. | Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401[2015-03-11]. https://pubmed.ncbi.nlm.nih.gov/25870079/. DOI: 10.1016/j.ophtha.2015.02.036. |
46. | Bonfiglio V, Reibaldi M, Pizzo A, et al. Dexamethasone for unresponsive diabetic macular oedema: optical coherence tomography biomarkers[J/OL]. Acta Ophthalmol, 2019, 97(4): e540-e544[2018-10-14]. https://pubmed.ncbi.nlm.nih.gov/30318792/. DOI: 10.1111/aos.13935. |
47. | Bressler SB, Qin H, Beck RW, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab[J]. Arch Ophthalmol, 2012, 130(9): 1153-1161. DOI: 10.1001/archophthalmol.2012.1107. |
48. | Sadiq MA, Soliman MK, Sarwar S, et al. Effect of vitreomacular adhesion on treatment outcomes in the ranibizumab for edema of the macula in diabetes (read-3) study[J]. Ophthalmology, 2016, 123(2): 324-329. DOI: 10.1016/j.ophtha.2015.09.032. |
49. | Bansal AS, Khurana RN, Wieland MR, et al. Influence of glycosylated hemoglobin on the efficacy of ranibizumab for diabetic macular edema: a post hoc analysis of the ride/rise trials[J]. Ophthalmology, 2015, 122(8): 1573-1579. DOI: 10.1016/j.ophtha.2015.04.029. |
50. | Singh RP, Habbu K, Ehlers JP, et al. The impact of systemic factors on clinical response to ranibizumab for diabetic macular edema[J]. Ophthalmology, 2016, 123(7): 1581-1587. DOI: 10.1016/j.ophtha.2016.03.038. |
51. | Brito P, Costa J, Gomes N, et al. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF[J]. J Diabetes Complications, 2018, 32(7): 643-649. DOI: 10.1016/j.jdiacomp.2018.05.006. |
52. | Hu Y, Cheng Y, Xu X, et al. Pretreatment neutrophil-to-lymphocyte ratio predicts prognosis in patients with diabetic macular edema treated with ranibizumab[J/OL]. BMC Ophthalmol, 2019, 19(1): 194[2019-08-27]. https://pubmed.ncbi.nlm.nih.gov/31455273/. DOI: 10.1186/s12886-019-1200-4. |
53. | Yoshitake T, Murakami T, Yoshitake S, et al. Anti-fumarase antibody as a predictor of functional efficacy of anti-VEGF therapy for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 787-794. DOI: 10.1167/iovs.18-26209. |
54. | Yoshitake S, Murakami T, Suzuma K, et al. Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema[J]. Diabetologia, 2019, 62(3): 504-516. DOI: 10.1007/s00125-018-4773-1. |
55. | Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/S2213-8587(16)30052-3. |
56. | Giocanti-Auregan A, Fajnkuchen F. Author response: functional and anatomic outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J/OL]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1857[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28358952/. DOI: 10.1167/iovs.17-21726. |
57. | Hillier RJ, Ojaimi E, Wong DT, et al. Aqueous humor cytokine levels and anatomic response to intravitreal ranibizumab in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(4): 382-388. DOI: 10.1001/jamaophthalmol.2018.0179. |
58. | Durlacher-Betzer K, Hassan A, Levi R, et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease[J]. Kidney Int, 2018, 94(2): 315-325. DOI: 10.1016/j.kint.2018.02.026. |
59. | Kwon JW, Jee D. Aqueous humor cytokine levels in patients with diabetic macular edema refractory to anti-VEGF treatment[J/OL]. PLoS One, 2018, 13(9): e0203408[2018-09-11]. https://pubmed.ncbi.nlm.nih.gov/30204781/. DOI: 10.1371/journal.pone.0203408. |
60. | Fursova AZ, Chubar NV, Tarasov MS, et al. Effectiveness of diffuse diabetic macular edema treatment in relation to structural changes in macular region[J]. Vestn Oftalmol, 2016, 132(4): 35-42. DOI: 10.17116/oftalma2016132435-42. |
61. | Park YG, Choi MY, Kwon JW. Factors associated with the duration of action of dexamethasone intravitreal implants in diabetic macular edema patients[J/OL]. Sci Rep, 2019, 9(1): 19588[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31862943/. DOI: 10.1038/s41598-019-56143-1. |
- 1. Busch C, Fraser-Bell S, Iglicki M, et al. Real-world outcomes of non-responding diabetic macular edema treated with continued anti-VEGF therapy versus early switch to dexamethasone implant: 2-year results[J]. Acta Diabetol, 2019, 56(12): 1341-1350. DOI: 10.1007/s00592-019-01416-4.
- 2. Wykoff CC, Elman MJ, Regillo CD, et al. Predictors of diabetic macular edema treatment frequency with ranibizumab during the open-label extension of the RIDE and RISE trials[J]. Ophthalmology, 2016, 123(8): 1716-1721. DOI: 10.1016/j.ophtha.2016.04.004.
- 3. Chatziralli I, Theodossiadis P, Parikakis E, et al. Dexamethasone intravitreal implant in diabetic macular edema: real-life data from a prospective study and predictive factors for visual outcome[J]. Diabetes Ther, 2017, 8(6): 1393-1404. DOI: 10.1007/s13300-017-0332-x.
- 4. Gonzalez VH, Campbell J, Holekamp NM, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data[J]. Am J Ophthalmol, 2016, 172(11): 72-79. DOI: 10.1016/j.ajo.2016.09.012.
- 5. Fan W, Uji A, Wang K, et al. Severity of diabetic macular edema correlates with retinal vascular bed area on ultra-wide field fluorescein andiography[J]. Retina, 2020, 40(6): 1029-1037. DOI: 10.1097/IAE.0000000000002579.
- 6. Bobak B, Thomas H, Tunde P, et al. Ultra-widefield fluorescein angiography as a biomarker for response to switch in therapy[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(12): 771-778. DOI: 10.3928/23258160-20191119-04.
- 7. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. DOI: 10.1016/j.ophtha.2016.02.022.
- 8. Singer MA, Kermany DS, Waters J, et al. Diabetic macular edema: it is more than just VEGF [J/OL]. F1000Res, 2016, 5: 1000-1019[2016-05-27]. https://pubmed.ncbi.nlm.nih.gov/27303642/. DOI: 10.12688/f1000research.8265.1.
- 9. Patel RD, Messner LV, Teitelbaum B, et al. Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema[J]. Am J Ophthalmol, 2013, 155(6): 1038-1044. DOI: 10.1016/j.ajo.2013.01.007.
- 10. Tan CS, Chew MC, van Hemert J, et al. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index[J]. Br J Ophthalmol, 2016, 100(2): 235-239. DOI: 10.1136/bjophthalmol-2015-306652.
- 11. Silva PS, Dela Cruz AJ, Ledesma MG, et al. Diabetic retinopathy severity and peripheral lesions are associated with nonperfusion on ultrawide field angiography[J]. Ophthalmology, 2015, 122(12): 2465-2472. DOI: 10.1016/j.ophtha.2015.07.034.
- 12. Ishibazawa A, Nagaoka T, Yokota H, et al. Characteristics of retinal neovascularization in proliferative diabetic retinopathy imaged by optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2016, 57(14): 6247-6255. DOI: 10.1167/iovs.16-20210.
- 13. Muqit MM, Stanga PE. Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2014, 98(1): 65-72. DOI: 10.1136/bjophthalmol-2013-303941.
- 14. Lee J, Moon BG, Cho AR, et al. Optical coherence tomography angiography of dme and its association with anti-VEGF treatment response[J]. Ophthalmology, 2016, 123(11): 2368-2375. DOI: 10.1016/j.ophtha.2016.07.010.
- 15. Moon BG, Um T, Lee J, et al. Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment[J]. Ophthalmol Retina, 2018, 2(3): 235-243. DOI: 10.1016/j.oret.2017.07.003.
- 16. Busch C, Wakabayashi T, Sato T, et al. Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study[J/OL]. Sci Rep, 2019, 9(1): 1561[2019-02-07]. https://pubmed.ncbi.nlm.nih.gov/30733512/. DOI: 10.1038/s41598-018-38248-1.
- 17. Enders C, Lang GE, Dreyhaupt J, et al. Quantity and quality of image artifacts in optical coherence tomography angiography[J/OL]. PLoS One, 2019, 14(1): e0210505[2019-01-25]. https://pubmed.ncbi.nlm.nih.gov/30682050/. DOI: 10.1371/journal.pone.0210505.
- 18. Deák GG, Schmidt-Erfurth UM, Jampol LM. Correlation of central retinal thickness and visual acuity in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(11): 1215-1216. DOI: 10.1001/jamaophthalmol.2018.3848.
- 19. Zur D, Iglicki M, Sala-Puigdollers A, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant[J/OL]. Acta Ophthalmol, 2020, 98(2): e217-e223[2019-08-18]. https://pubmed.ncbi.nlm.nih.gov/31421028/. DOI: 10.1111/aos.14230.
- 20. Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570. DOI: 10.2337/db14-0782.
- 21. Das R, Spence G, Hogg RE, et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(2): 202-208. DOI: 10.1001/jamaophthalmol.2017.6256.
- 22. Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316. DOI: 10.1001/jamaophthalmol.2014.2350.
- 23. Blindbæk SL, Torp TL, Lundberg K, et al. Noninvasive retinal markers in diabetic retinopathy: advancing from bench towards bedside[J/OL]. J Diabetes Res, 2017, 17(4): 2562759[2017-04-13]. https://pubmed.ncbi.nlm.nih.gov/28491870/. DOI: 10.1155/2017/2562759.
- 24. Chhablani JK, Kim JS, Cheng L, et al. External limiting membrane as a predictor of visual improvement in diabetic macular edema after pars plana vitrectomy[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(10): 1415-1420. DOI: 10.1007/s00417-012-1968-x.
- 25. Maheshwary AS, Oster SF, Yuson RM, et al. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2010, 150(1): 63-67. DOI: 10.1016/j.ajo.2010.01.039.
- 26. Forooghian F, Stetson PF, Meyer SA, et al. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema[J]. Retina, 2010, 30(1): 63-70. DOI: 10.1097/IAE.0b013e3181bd2c5a.
- 27. Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 715-721. DOI: 10.1167/iovs.17-23042.
- 28. Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255.
- 29. Hye SH, Ju BC, Jin YK, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725.
- 30. Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717. DOI: 10.1016/j.ajo.2011.08.041.
- 31. Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT[J/OL]. J Diabetes Res, 2013, 2013: 491835[2013-12-09]. https://pubmed.ncbi.nlm.nih.gov/24386645/. DOI: 10.1155/2013/491835.
- 32. Liu S, Wang D, Chen F. Hyperreflective foci in OCT image as a biomarker of poor prognosis in diabetic macular edema patients treating with Conbercept in China[J/OL]. BMC Ophthalmol, 2019, 19(1): 157[2019-07-23]. https://pubmed.ncbi.nlm.nih.gov/31337360/. DOI: 10.1186/s12886-019-1168-0.
- 33. Yoshitake T, Murakami T, Suzuma K, et al. Hyperreflective foci in the outer retinal layers as a predictor of the functional efficacy of ranibizumab for diabetic macular edema[J/OL]. Sci Rep, 2020, 10(1): 873[2020-01-21]. https://pubmed.ncbi.nlm.nih.gov/31964970/. DOI: 10.1038/s41598-020-57646-y.
- 34. Murakami T, Suzuma K, Uji A, et al. Association between characteristics of foveal cystoid spaces and short-term responsiveness to ranibizumab for diabetic macular edema[J]. Jpn J Ophthalmol, 2018, 62(3): 292-301. DOI: 10.1007/s10384-018-0575-8.
- 35. Nishijima K, Murakami T, Hirashima T, et al. Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema[J]. Retina, 2014, 34(4): 732-740. DOI: 10.1097/IAE.0000000000000005.
- 36. Vujosevic S, Toma C, Villani E, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids[J]. Acta Diabetol, 2020, 57(3): 287-296. DOI: 10.1007/s00592-019-01424-4.
- 37. Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J/OL]. Acta Ophthalmol, 2013, 91(7): e529-536[2013-05-07]. https://pubmed.ncbi.nlm.nih.gov/23647578/. DOI: 10.1111/aos.12153.
- 38. Arf S, Sayman Muslubas I, Hocaoglu M, et al. Spectral domain optical coherence tomography classification of diabetic macular edema: a new proposal to clinical practice[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(6): 1165-1172. DOI: 10.1007/s00417-020-04640-9.
- 39. Zur D, Iglicki M, Busch C, et al. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant[J]. Ophthalmology, 2018, 125(2): 267-275. DOI: 10.1016/j.ophtha.2017.08.031.
- 40. Karst SG, Lammer J, Mitsch C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 56(1): 49-58. DOI: 10.1007/s00417-017-3828-1.
- 41. Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203. DOI: 10.1136/bjophthalmol-2017-310483.
- 42. Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J Ophthalmol, 2017, 181(6): 149-155. DOI: 10.1016/j.ajo.2017.06.026.
- 43. Ashraf M. Functional and anatomic outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J/OL]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1856[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28358951/. DOI: 10.1167/iovs.17-21655.
- 44. Giocanti-Aurégan A, Hrarat L, Qu LM, et al. Functional and anatomical outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 797-800. DOI: 10.1167/iovs.16-20855.
- 45. Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401[2015-03-11]. https://pubmed.ncbi.nlm.nih.gov/25870079/. DOI: 10.1016/j.ophtha.2015.02.036.
- 46. Bonfiglio V, Reibaldi M, Pizzo A, et al. Dexamethasone for unresponsive diabetic macular oedema: optical coherence tomography biomarkers[J/OL]. Acta Ophthalmol, 2019, 97(4): e540-e544[2018-10-14]. https://pubmed.ncbi.nlm.nih.gov/30318792/. DOI: 10.1111/aos.13935.
- 47. Bressler SB, Qin H, Beck RW, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab[J]. Arch Ophthalmol, 2012, 130(9): 1153-1161. DOI: 10.1001/archophthalmol.2012.1107.
- 48. Sadiq MA, Soliman MK, Sarwar S, et al. Effect of vitreomacular adhesion on treatment outcomes in the ranibizumab for edema of the macula in diabetes (read-3) study[J]. Ophthalmology, 2016, 123(2): 324-329. DOI: 10.1016/j.ophtha.2015.09.032.
- 49. Bansal AS, Khurana RN, Wieland MR, et al. Influence of glycosylated hemoglobin on the efficacy of ranibizumab for diabetic macular edema: a post hoc analysis of the ride/rise trials[J]. Ophthalmology, 2015, 122(8): 1573-1579. DOI: 10.1016/j.ophtha.2015.04.029.
- 50. Singh RP, Habbu K, Ehlers JP, et al. The impact of systemic factors on clinical response to ranibizumab for diabetic macular edema[J]. Ophthalmology, 2016, 123(7): 1581-1587. DOI: 10.1016/j.ophtha.2016.03.038.
- 51. Brito P, Costa J, Gomes N, et al. Serological inflammatory factors as biomarkers for anatomic response in diabetic macular edema treated with anti-VEGF[J]. J Diabetes Complications, 2018, 32(7): 643-649. DOI: 10.1016/j.jdiacomp.2018.05.006.
- 52. Hu Y, Cheng Y, Xu X, et al. Pretreatment neutrophil-to-lymphocyte ratio predicts prognosis in patients with diabetic macular edema treated with ranibizumab[J/OL]. BMC Ophthalmol, 2019, 19(1): 194[2019-08-27]. https://pubmed.ncbi.nlm.nih.gov/31455273/. DOI: 10.1186/s12886-019-1200-4.
- 53. Yoshitake T, Murakami T, Yoshitake S, et al. Anti-fumarase antibody as a predictor of functional efficacy of anti-VEGF therapy for diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 787-794. DOI: 10.1167/iovs.18-26209.
- 54. Yoshitake S, Murakami T, Suzuma K, et al. Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema[J]. Diabetologia, 2019, 62(3): 504-516. DOI: 10.1007/s00125-018-4773-1.
- 55. Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/S2213-8587(16)30052-3.
- 56. Giocanti-Auregan A, Fajnkuchen F. Author response: functional and anatomic outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J/OL]. Invest Ophthalmol Vis Sci, 2017, 58(3): 1857[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28358952/. DOI: 10.1167/iovs.17-21726.
- 57. Hillier RJ, Ojaimi E, Wong DT, et al. Aqueous humor cytokine levels and anatomic response to intravitreal ranibizumab in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(4): 382-388. DOI: 10.1001/jamaophthalmol.2018.0179.
- 58. Durlacher-Betzer K, Hassan A, Levi R, et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease[J]. Kidney Int, 2018, 94(2): 315-325. DOI: 10.1016/j.kint.2018.02.026.
- 59. Kwon JW, Jee D. Aqueous humor cytokine levels in patients with diabetic macular edema refractory to anti-VEGF treatment[J/OL]. PLoS One, 2018, 13(9): e0203408[2018-09-11]. https://pubmed.ncbi.nlm.nih.gov/30204781/. DOI: 10.1371/journal.pone.0203408.
- 60. Fursova AZ, Chubar NV, Tarasov MS, et al. Effectiveness of diffuse diabetic macular edema treatment in relation to structural changes in macular region[J]. Vestn Oftalmol, 2016, 132(4): 35-42. DOI: 10.17116/oftalma2016132435-42.
- 61. Park YG, Choi MY, Kwon JW. Factors associated with the duration of action of dexamethasone intravitreal implants in diabetic macular edema patients[J/OL]. Sci Rep, 2019, 9(1): 19588[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31862943/. DOI: 10.1038/s41598-019-56143-1.
-
Previous Article
Advances in the study of residual fragments in macular hole surgery -
Next Article
Progress in immunotherapy for uveal melanoma