- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China;
Once uveal melanoma (UM) has distant metastasis, the median survival time of the patient is less than 12 months. There is currently a lack of standard treatment for metastatic UM. In recent years, immunotherapy is splendid in the field of oncology. Immune checkpoint therapy, cancer vaccine therapy and T cell adoptive therapy have been applied to UM therapy. However, most of the clinical effects are limited and the survival benefit is not high. The recent early research results of the new immunotherapeutic drug IMCgp100 are encouraging.
Citation: Fang Rui, Li Yang, Wei Wenbin. Progress in immunotherapy for uveal melanoma. Chinese Journal of Ocular Fundus Diseases, 2021, 37(4): 327-332. doi: 10.3760/cma.j.cn511434-20200207-00044 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Berus T, Halon A, Markiewicz A, et al. Clinical, histopathological and cytogenetic prognosticators in uveal melanoma: a comprehensive review[J]. Anticancer Res, 2017, 37(12): 6541-6549. DOI: 10.21873/anticanres.12110. |
2. | Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer[J]. Eye (Lond), 2017, 31(2): 241-257. DOI: 10.1038/eye.2016.275. |
3. | Bakhoum MF, Esmaeli B. Molecular characteristics of uveal melanoma: insights from the cancer genome atlas (TCGA) project[J/OL]. Cancers (Basel), 2019, 11(8): 1061[2019-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721321/. DOI: 10.3390/cancers11081061. |
4. | Sussman TA, Funchain P, Singh A. Clinical trials in metastatic uveal melanoma: current status[J]. Ocul Oncol Pathol, 2020, 6(6): 381-387. DOI: 10.1159/000508383. |
5. | Nakajima H, Nakatsura T. Towards the era of immune checkpoint inhibitors and personalized cancer immunotherapy[J]. Immunol Med, 2021, 44(1): 10-15. DOI: 10.1080/25785826.2020.1785654. |
6. | Roerden M, Nelde A, Walz JS. Neoantigens in hematological malignancies-ultimate targets for immunotherapy?[J/OL]. Front Immunol, 2019, 10: 3004[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31921218/. DOI: 10.3389/fimmu.2019.03004. |
7. | Domogalla MP, Rostan PV, Raker VK, et al. Tolerance through education: how tolerogenic dendritic cells shape immunity[J/OL]. Front Immunol, 2017, 8: 1764[2017-12-11]. https://pubmed.ncbi.nlm.nih.gov/29375543/. DOI: 10.3389/fimmu.2017.01764. |
8. | Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment[J]. Cell Mol Immunol, 2020, 17(1): 1-12. DOI: 10.1038/s41423-019-0306-1. |
9. | Wierenga APA, Cao J, Luyten GPM, et al. Immune checkpoint inhibitors in uveal and conjunctival melanoma[J]. Int Ophthalmol Clin, 2019, 59(2): 53-63. DOI: 10.1097/IIO.0000000000000263. |
10. | Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501. DOI: 10.1056/NEJMc1713444. |
11. | Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma[J]. Cell, 2015, 161(7): 1681-1696. DOI: 10.1016/j.cell.2015.05.044. |
12. | Croce M, Ferrini S, Pfeffer U, et al. Targeted therapy of uveal melanoma: recent failures and new perspectives[J/OL]. Cancers (Basel), 2019, 11(6): 846[2019-06-18]. https://pubmed.ncbi.nlm.nih.gov/31216772/. DOI: 10.3390/cancers11060846. |
13. | Robertson AG, Shih J, Yau C, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma[J]. Cancer Cell, 2018, 33(2): 204-220. DOI: 10.1016/j.ccell.2017.12.013. |
14. | Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas[J]. Science, 2010, 330(6009): 1410-1413. DOI: 10.1126/science.1194472. |
15. | Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye[J]. Br J Exp Pathol, 1948, 29(1): 58-69. |
16. | The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group[J]. Arch Ophthalmol, 1992, 110(10): 1392-1403. DOI: 10.1001/archopht.1992.01080220054021. |
17. | Hori J, Vega JL, Masli S. Review of ocular immune privilege in the year 2010: modifying the immune privilege of the eye[J]. Ocul Immunol Inflamm, 2010, 18(5): 325-333. DOI: 10.3109/09273948.2010.512696. |
18. | Masli S, Vega JL. Ocular immune privilege sites[J]. Methods Mol Biol, 2011, 677: 449-458. DOI: 10.1007/978-1-60761-869-0_28. |
19. | Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy[J]. Int Rev Immunol, 2002, 21(2-3): 123-152. DOI: 10.1080/08830180212066. |
20. | Vega JL, Keino H, Masli S. Surgical denervation of ocular sympathetic afferents decreases local transforming growth factor-beta and abolishes immune privilege[J]. Am J Pathol, 2009, 175(3): 1218-1225. DOI: 10.2353/ajpath.2009.090264. |
21. | Niederkorn JY. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism?[J/OL]. Front Immunol, 2012, 3: 148[2012-07-13]. https://pubmed.ncbi.nlm.nih.gov/22707951/. DOI: 10.3389/fimmu.2012.00148. |
22. | Komatsubara KM, Carvajal RD. Immunotherapy for the treatment of uveal melanoma: current status and emerging therapies[J/OL]. Curr Oncol Rep, 2017, 19(7): 45[2017-05-16]. https://pubmed.ncbi.nlm.nih.gov/28508938/. DOI: 10.1007/s11912-017-0606-5. |
23. | Oliva M, Rullan AJ, Piulats JM. Uveal melanoma as a target for immune-therapy[J/OL]. Ann Transl Med, 2016, 4(9): 172[2016-05-04]. https://pubmed.ncbi.nlm.nih.gov/27275485/. DOI: 10.21037/atm.2016.05.04. |
24. | Bol KF, Ellebaek E, Hoejberg L, et al. Real-world impact of immune checkpoint inhibitors in metastatic uveal melanoma[J/OL]. Cancers (Basel), 2019, 11(10): 1489[2019-10-03]. https://pubmed.ncbi.nlm.nih.gov/31623302/. DOI: 10.3390/cancers11101489. |
25. | Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.2214/AJR.09.4110. |
26. | Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J]. N Engl J Med, 2011, 364(26): 2517-2526. DOI: 10.1056/NEJMoa1104621. |
27. | Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4): 320-330. DOI: 10.1056/NEJMoa1414428. |
28. | Bender C, Enk A, Gutzmer R, et al. Anti-PD-1 antibodies in metastatic uveal melanoma: a treatment option?[J]. Cancer Med, 2017, 6(7): 1581-1586. DOI: 10.1002/cam4.887. |
29. | Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial[J]. Lancet Oncol, 2015, 16(4): 375-384. DOI: 10.1016/S1470-2045(15)70076-8. |
30. | Sagiv O, Thakar SD, Kandl TJ, et al. Immunotherapy with programmed cell death 1 inhibitors for 5 patients with conjunctival melanoma[J]. JAMA Ophthalmol, 2018, 136(11): 1236-1241. DOI: 10.1001/jamaophthalmol.2018.3488. |
31. | Algazi AP, Tsai KK, Shoushtari AN, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies[J]. Cancer, 2016, 122(21): 3344-3353. DOI: 10.1002/cncr.30258. |
32. | Piulats RJ, Ochoa de OM, Codes M, et al. Phase Ⅱ study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (Pts) with metastatic uveal melanoma (MUM): The GEM-1 trial[J/OL]. J Clin Oncol 2014, 32: 9033[2014-05-14]. https://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.9033. DOI: 10.1200/jco.2014.32.15. |
33. | Fountain E, Bassett RL, Cain S, et al. Adjuvant ipilimumab in high-risk uveal melanoma[J/OL]. Cancers (Basel), 2019, 11: 152[2019-01-29]. https://pubmed.ncbi.nlm.nih.gov/30699934/. DOI: 10.3390/cancers11020152. |
34. | Yang J, Manson DK, Marr BP, et al. Treatment of uveal melanoma: where are we now?[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758834018757175[2018-02-21]. https://pubmed.ncbi.nlm.nih.gov/29497459/. DOI: 10.1177/1758834018757175. |
35. | Rossi E, Pagliara MM, Orteschi D, et al. Pembrolizumab as first-line treatment for metastatic uveal melanoma[J]. Cancer Immunol Immunother, 2019, 68(7): 1179-1185. DOI: 10.1007/s00262-019-02352-6. |
36. | Jindal V. Role of immune checkpoint inhibitors and novel immunotherapies in uveal melanoma[J/OL]. Chin Clin Oncol, 2018, 7(1): 8[2018-02-07]. https://pubmed.ncbi.nlm.nih.gov/29486567/. DOI: 10.21037/cco.2018.01.05. |
37. | Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy[J]. Am J Clin Dermatol, 2018, 19(3): 345-361. DOI: 10.1007/s40257-017-0336-3. |
38. | Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. DOI: 10.3322/caac.21596. |
39. | Weinstein A, Gordon RA, Kasler MK, et al. Understanding and managing immune-related adverse events associated with immune checkpoint inhibitors in patients with advanced melanoma[J]. J Adv Pract Oncol, 2017, 8(1): 58-72. DOI: 10.6004/jadpro.2017.8.1.5. |
40. | Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis[J]. JAMA Oncol, 2018, 4(2): 173-182. DOI: 10.1001/jamaoncol.2017.3064. |
41. | Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article[J]. Curr Opin Oncol, 2016, 28(4): 288-294. DOI: 10.1097/CCO.0000000000000296. |
42. | Romero P, Banchereau J, Bhardwaj N, et al. The human vaccines project: a roadmap for cancer vaccine development[J/OL]. Sci Transl Med, 2016, 8(334): 334ps9[2016-04-13]. https://pubmed.ncbi.nlm.nih.gov/27075624/. DOI: 10.1126/scitranslmed.aaf0685. |
43. | Gross S, Erdmann M, Haendle I, et al. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients[J/OL]. JCI Insight, 2017, 2(8): e91438[2017-04-20]. https://pubmed.ncbi.nlm.nih.gov/28422751/. DOI: 10.1172/jci.insight.91438. |
44. | Bol KF, van den BT, Schreibelt G, et al. Adjuvant dendritic cell vaccination in high-risk uveal melanoma[J]. Ophthalmology, 2016, 123(10): 2265-2267. DOI: 10.1016/j.ophtha.2016.06.027. |
45. | Bol KaF, Mensink HW, Aarntzen EH, et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients[J]. Am J Ophthalmol, 2014, 158(5): 939-947. DOI: 10.1016/j.ajo.2014.07.014. |
46. | Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13): 4550-4557. DOI: 10.1158/1078-0432.CCR-11-0116. |
47. | Chandran SS, Somerville RPT, Yang JC, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study[J]. Lancet Oncol, 2017, 18(6): 792-802. DOI: 10.1016/S1470-2045(17)30251-6. |
48. | Schank TE, Hassel JC. Immunotherapies for the treatment of uveal melanoma-history and future[J/OL]. Cancers (Basel), 2019, 11(8): 1048[2019-07-24]. https://pubmed.ncbi.nlm.nih.gov/31344957/. DOI: 10.3390/cancers11081048. |
49. | Damato BE, Dukes J, Goodall H, et al. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma[J/OL]. Cancers (Basel), 2019, 11(7): 971[2019-07-11]. https://pubmed.ncbi.nlm.nih.gov/31336704/. DOI: 10.3390/cancers11070971. |
50. | Boudousquie C, Bossi G, Hurst JM, et al. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 and CD4 T cells[J]. Immunology, 2017, 152(3): 425-438. DOI: 10.1111/imm.12779. |
51. | Cooper ZA, Reuben A, Spencer CN, et al. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma[J/OL]. Oncoimmunology, 2016, 5(3): e1136044[2016-02-02]. https://pubmed.ncbi.nlm.nih.gov/27141370/. DOI: 10.1080/2162402X.2015.1136044. |
52. | Varn FS, Wang Y, Mullins DW, et al. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment[J]. Cancer Res, 2017, 77(6): 1271-1282. DOI: 10.1158/0008-5472.CAN-16-2490. |
53. | Qin Y, Petaccia de MM, Reuben A, et al. Parallel profiling of immune infiltrate subsets in uveal melanoma versus cutaneous melanoma unveils similarities and differences: a pilot study[J/OL]. Oncoimmunology, 2017, 6(6): e1321187[2017-05-08]. https://pubmed.ncbi.nlm.nih.gov/28680759/. DOI: 10.1080/2162402X.2017.1321187. |
54. | de Waard-Siebinga I, Hilders CG, Hansen BE, et al. HLA expression and tumor-infiltrating immune cells in uveal melanoma[J]. Graefe's Arch Clin Exp Ophthalmol, 1996, 234(1): 34-42. DOI: 10.1007/BF00186516. |
55. | Pan H, Lu L, Cui J, et al. Immunological analyses reveal an immune subtype of uveal melanoma with a poor prognosis[J]. Aging (Albany NY), 2020, 12(2): 1446-1464. DOI: 10.18632/aging.102693. |
56. | Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. DOI: 10.1038/nature13954. |
57. | Durante MA, Rodriguez DA, Kurtenbach S, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma[J/OL]. Nat Commun, 2020, 11(1): 496[2020-01-24]. https://pubmed.ncbi.nlm.nih.gov/31980621/. DOI: 10.1038/s41467-019-14256-1. |
58. | Figueiredo CR, Kalirai H, Sacco JJ, et al. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development[J]. J Pathol, 2020, 250(4): 420. DOI: 10.1002/path.5384. |
59. | Basile MS, Mazzon E, Fagone P, et al. Immunobiology of uveal melanoma: state of the art and therapeutic targets[J/OL]. Front Oncol, 2019, 9: 1145[2019-11-05]. https://pubmed.ncbi.nlm.nih.gov/31750244/. DOI: 10.3389/fonc.2019.01145. |
60. | Kaunitz GJ, Cottrell TR, Lilo M, et al. Melanoma subtypes demonstrate distinct PD-L1 expression profiles[J]. Lab Invest, 2017, 97(9): 1063-1071. DOI: 10.1038/labinvest.2017.64. |
- 1. Berus T, Halon A, Markiewicz A, et al. Clinical, histopathological and cytogenetic prognosticators in uveal melanoma: a comprehensive review[J]. Anticancer Res, 2017, 37(12): 6541-6549. DOI: 10.21873/anticanres.12110.
- 2. Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer[J]. Eye (Lond), 2017, 31(2): 241-257. DOI: 10.1038/eye.2016.275.
- 3. Bakhoum MF, Esmaeli B. Molecular characteristics of uveal melanoma: insights from the cancer genome atlas (TCGA) project[J/OL]. Cancers (Basel), 2019, 11(8): 1061[2019-07-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721321/. DOI: 10.3390/cancers11081061.
- 4. Sussman TA, Funchain P, Singh A. Clinical trials in metastatic uveal melanoma: current status[J]. Ocul Oncol Pathol, 2020, 6(6): 381-387. DOI: 10.1159/000508383.
- 5. Nakajima H, Nakatsura T. Towards the era of immune checkpoint inhibitors and personalized cancer immunotherapy[J]. Immunol Med, 2021, 44(1): 10-15. DOI: 10.1080/25785826.2020.1785654.
- 6. Roerden M, Nelde A, Walz JS. Neoantigens in hematological malignancies-ultimate targets for immunotherapy?[J/OL]. Front Immunol, 2019, 10: 3004[2019-12-20]. https://pubmed.ncbi.nlm.nih.gov/31921218/. DOI: 10.3389/fimmu.2019.03004.
- 7. Domogalla MP, Rostan PV, Raker VK, et al. Tolerance through education: how tolerogenic dendritic cells shape immunity[J/OL]. Front Immunol, 2017, 8: 1764[2017-12-11]. https://pubmed.ncbi.nlm.nih.gov/29375543/. DOI: 10.3389/fimmu.2017.01764.
- 8. Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment[J]. Cell Mol Immunol, 2020, 17(1): 1-12. DOI: 10.1038/s41423-019-0306-1.
- 9. Wierenga APA, Cao J, Luyten GPM, et al. Immune checkpoint inhibitors in uveal and conjunctival melanoma[J]. Int Ophthalmol Clin, 2019, 59(2): 53-63. DOI: 10.1097/IIO.0000000000000263.
- 10. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501. DOI: 10.1056/NEJMc1713444.
- 11. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma[J]. Cell, 2015, 161(7): 1681-1696. DOI: 10.1016/j.cell.2015.05.044.
- 12. Croce M, Ferrini S, Pfeffer U, et al. Targeted therapy of uveal melanoma: recent failures and new perspectives[J/OL]. Cancers (Basel), 2019, 11(6): 846[2019-06-18]. https://pubmed.ncbi.nlm.nih.gov/31216772/. DOI: 10.3390/cancers11060846.
- 13. Robertson AG, Shih J, Yau C, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma[J]. Cancer Cell, 2018, 33(2): 204-220. DOI: 10.1016/j.ccell.2017.12.013.
- 14. Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas[J]. Science, 2010, 330(6009): 1410-1413. DOI: 10.1126/science.1194472.
- 15. Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye[J]. Br J Exp Pathol, 1948, 29(1): 58-69.
- 16. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group[J]. Arch Ophthalmol, 1992, 110(10): 1392-1403. DOI: 10.1001/archopht.1992.01080220054021.
- 17. Hori J, Vega JL, Masli S. Review of ocular immune privilege in the year 2010: modifying the immune privilege of the eye[J]. Ocul Immunol Inflamm, 2010, 18(5): 325-333. DOI: 10.3109/09273948.2010.512696.
- 18. Masli S, Vega JL. Ocular immune privilege sites[J]. Methods Mol Biol, 2011, 677: 449-458. DOI: 10.1007/978-1-60761-869-0_28.
- 19. Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy[J]. Int Rev Immunol, 2002, 21(2-3): 123-152. DOI: 10.1080/08830180212066.
- 20. Vega JL, Keino H, Masli S. Surgical denervation of ocular sympathetic afferents decreases local transforming growth factor-beta and abolishes immune privilege[J]. Am J Pathol, 2009, 175(3): 1218-1225. DOI: 10.2353/ajpath.2009.090264.
- 21. Niederkorn JY. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism?[J/OL]. Front Immunol, 2012, 3: 148[2012-07-13]. https://pubmed.ncbi.nlm.nih.gov/22707951/. DOI: 10.3389/fimmu.2012.00148.
- 22. Komatsubara KM, Carvajal RD. Immunotherapy for the treatment of uveal melanoma: current status and emerging therapies[J/OL]. Curr Oncol Rep, 2017, 19(7): 45[2017-05-16]. https://pubmed.ncbi.nlm.nih.gov/28508938/. DOI: 10.1007/s11912-017-0606-5.
- 23. Oliva M, Rullan AJ, Piulats JM. Uveal melanoma as a target for immune-therapy[J/OL]. Ann Transl Med, 2016, 4(9): 172[2016-05-04]. https://pubmed.ncbi.nlm.nih.gov/27275485/. DOI: 10.21037/atm.2016.05.04.
- 24. Bol KF, Ellebaek E, Hoejberg L, et al. Real-world impact of immune checkpoint inhibitors in metastatic uveal melanoma[J/OL]. Cancers (Basel), 2019, 11(10): 1489[2019-10-03]. https://pubmed.ncbi.nlm.nih.gov/31623302/. DOI: 10.3390/cancers11101489.
- 25. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: 10.2214/AJR.09.4110.
- 26. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma[J]. N Engl J Med, 2011, 364(26): 2517-2526. DOI: 10.1056/NEJMoa1104621.
- 27. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J]. N Engl J Med, 2015, 372(4): 320-330. DOI: 10.1056/NEJMoa1414428.
- 28. Bender C, Enk A, Gutzmer R, et al. Anti-PD-1 antibodies in metastatic uveal melanoma: a treatment option?[J]. Cancer Med, 2017, 6(7): 1581-1586. DOI: 10.1002/cam4.887.
- 29. Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial[J]. Lancet Oncol, 2015, 16(4): 375-384. DOI: 10.1016/S1470-2045(15)70076-8.
- 30. Sagiv O, Thakar SD, Kandl TJ, et al. Immunotherapy with programmed cell death 1 inhibitors for 5 patients with conjunctival melanoma[J]. JAMA Ophthalmol, 2018, 136(11): 1236-1241. DOI: 10.1001/jamaophthalmol.2018.3488.
- 31. Algazi AP, Tsai KK, Shoushtari AN, et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies[J]. Cancer, 2016, 122(21): 3344-3353. DOI: 10.1002/cncr.30258.
- 32. Piulats RJ, Ochoa de OM, Codes M, et al. Phase Ⅱ study evaluating ipilimumab as a single agent in the first-line treatment of adult patients (Pts) with metastatic uveal melanoma (MUM): The GEM-1 trial[J/OL]. J Clin Oncol 2014, 32: 9033[2014-05-14]. https://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.9033. DOI: 10.1200/jco.2014.32.15.
- 33. Fountain E, Bassett RL, Cain S, et al. Adjuvant ipilimumab in high-risk uveal melanoma[J/OL]. Cancers (Basel), 2019, 11: 152[2019-01-29]. https://pubmed.ncbi.nlm.nih.gov/30699934/. DOI: 10.3390/cancers11020152.
- 34. Yang J, Manson DK, Marr BP, et al. Treatment of uveal melanoma: where are we now?[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758834018757175[2018-02-21]. https://pubmed.ncbi.nlm.nih.gov/29497459/. DOI: 10.1177/1758834018757175.
- 35. Rossi E, Pagliara MM, Orteschi D, et al. Pembrolizumab as first-line treatment for metastatic uveal melanoma[J]. Cancer Immunol Immunother, 2019, 68(7): 1179-1185. DOI: 10.1007/s00262-019-02352-6.
- 36. Jindal V. Role of immune checkpoint inhibitors and novel immunotherapies in uveal melanoma[J/OL]. Chin Clin Oncol, 2018, 7(1): 8[2018-02-07]. https://pubmed.ncbi.nlm.nih.gov/29486567/. DOI: 10.21037/cco.2018.01.05.
- 37. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy[J]. Am J Clin Dermatol, 2018, 19(3): 345-361. DOI: 10.1007/s40257-017-0336-3.
- 38. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. DOI: 10.3322/caac.21596.
- 39. Weinstein A, Gordon RA, Kasler MK, et al. Understanding and managing immune-related adverse events associated with immune checkpoint inhibitors in patients with advanced melanoma[J]. J Adv Pract Oncol, 2017, 8(1): 58-72. DOI: 10.6004/jadpro.2017.8.1.5.
- 40. Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis[J]. JAMA Oncol, 2018, 4(2): 173-182. DOI: 10.1001/jamaoncol.2017.3064.
- 41. Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article[J]. Curr Opin Oncol, 2016, 28(4): 288-294. DOI: 10.1097/CCO.0000000000000296.
- 42. Romero P, Banchereau J, Bhardwaj N, et al. The human vaccines project: a roadmap for cancer vaccine development[J/OL]. Sci Transl Med, 2016, 8(334): 334ps9[2016-04-13]. https://pubmed.ncbi.nlm.nih.gov/27075624/. DOI: 10.1126/scitranslmed.aaf0685.
- 43. Gross S, Erdmann M, Haendle I, et al. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients[J/OL]. JCI Insight, 2017, 2(8): e91438[2017-04-20]. https://pubmed.ncbi.nlm.nih.gov/28422751/. DOI: 10.1172/jci.insight.91438.
- 44. Bol KF, van den BT, Schreibelt G, et al. Adjuvant dendritic cell vaccination in high-risk uveal melanoma[J]. Ophthalmology, 2016, 123(10): 2265-2267. DOI: 10.1016/j.ophtha.2016.06.027.
- 45. Bol KaF, Mensink HW, Aarntzen EH, et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients[J]. Am J Ophthalmol, 2014, 158(5): 939-947. DOI: 10.1016/j.ajo.2014.07.014.
- 46. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13): 4550-4557. DOI: 10.1158/1078-0432.CCR-11-0116.
- 47. Chandran SS, Somerville RPT, Yang JC, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study[J]. Lancet Oncol, 2017, 18(6): 792-802. DOI: 10.1016/S1470-2045(17)30251-6.
- 48. Schank TE, Hassel JC. Immunotherapies for the treatment of uveal melanoma-history and future[J/OL]. Cancers (Basel), 2019, 11(8): 1048[2019-07-24]. https://pubmed.ncbi.nlm.nih.gov/31344957/. DOI: 10.3390/cancers11081048.
- 49. Damato BE, Dukes J, Goodall H, et al. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma[J/OL]. Cancers (Basel), 2019, 11(7): 971[2019-07-11]. https://pubmed.ncbi.nlm.nih.gov/31336704/. DOI: 10.3390/cancers11070971.
- 50. Boudousquie C, Bossi G, Hurst JM, et al. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 and CD4 T cells[J]. Immunology, 2017, 152(3): 425-438. DOI: 10.1111/imm.12779.
- 51. Cooper ZA, Reuben A, Spencer CN, et al. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma[J/OL]. Oncoimmunology, 2016, 5(3): e1136044[2016-02-02]. https://pubmed.ncbi.nlm.nih.gov/27141370/. DOI: 10.1080/2162402X.2015.1136044.
- 52. Varn FS, Wang Y, Mullins DW, et al. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment[J]. Cancer Res, 2017, 77(6): 1271-1282. DOI: 10.1158/0008-5472.CAN-16-2490.
- 53. Qin Y, Petaccia de MM, Reuben A, et al. Parallel profiling of immune infiltrate subsets in uveal melanoma versus cutaneous melanoma unveils similarities and differences: a pilot study[J/OL]. Oncoimmunology, 2017, 6(6): e1321187[2017-05-08]. https://pubmed.ncbi.nlm.nih.gov/28680759/. DOI: 10.1080/2162402X.2017.1321187.
- 54. de Waard-Siebinga I, Hilders CG, Hansen BE, et al. HLA expression and tumor-infiltrating immune cells in uveal melanoma[J]. Graefe's Arch Clin Exp Ophthalmol, 1996, 234(1): 34-42. DOI: 10.1007/BF00186516.
- 55. Pan H, Lu L, Cui J, et al. Immunological analyses reveal an immune subtype of uveal melanoma with a poor prognosis[J]. Aging (Albany NY), 2020, 12(2): 1446-1464. DOI: 10.18632/aging.102693.
- 56. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. DOI: 10.1038/nature13954.
- 57. Durante MA, Rodriguez DA, Kurtenbach S, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma[J/OL]. Nat Commun, 2020, 11(1): 496[2020-01-24]. https://pubmed.ncbi.nlm.nih.gov/31980621/. DOI: 10.1038/s41467-019-14256-1.
- 58. Figueiredo CR, Kalirai H, Sacco JJ, et al. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development[J]. J Pathol, 2020, 250(4): 420. DOI: 10.1002/path.5384.
- 59. Basile MS, Mazzon E, Fagone P, et al. Immunobiology of uveal melanoma: state of the art and therapeutic targets[J/OL]. Front Oncol, 2019, 9: 1145[2019-11-05]. https://pubmed.ncbi.nlm.nih.gov/31750244/. DOI: 10.3389/fonc.2019.01145.
- 60. Kaunitz GJ, Cottrell TR, Lilo M, et al. Melanoma subtypes demonstrate distinct PD-L1 expression profiles[J]. Lab Invest, 2017, 97(9): 1063-1071. DOI: 10.1038/labinvest.2017.64.