Electroencephalogram (EEG) classification for brain-computer interface (BCI) is a new way of realizing human-computer interreaction. In this paper the application of semi-supervised sparse representation classifier algorithms based on help training to EEG classification for BCI is reported. Firstly, the correlation information of the unlabeled data is obtained by sparse representation classifier and some data with high correlation selected. Secondly, the boundary information of the selected data is produced by discriminative classifier, which is the Fisher linear classifier. The final unlabeled data with high confidence are selected by a criterion containing the information of distance and direction. We applied this novel method to the three benchmark datasets, which were BCIⅠ, BCIⅡ_Ⅳ and USPS. The classification rate were 97%,82% and 84.7%, respectively. Moreover the fastest arithmetic rate was just about 0.2 s. The classification rate and efficiency results of the novel method are both better than those of S3VM and SVM, proving that the proposed method is effective.
Six kinds of erythemato-squamous diseases have been common skin diseases, but the diagnosis of them has always been a problem. The quantitative data processing method is not suitable for erythemato-squamous data because they are categorical qualitative data. This paper proposed a new method based on group lasso penalized classification for the feature selection and classification for erythemato-squamous data with categorical qualitative data. The first categorical data of 33 dimensions were changed by the virtual code, and then 34th dimension age data were discretized and changed by the virtual code. Then the encoded data were grouped according to class group and variable group. Lastly Group Lasso penalized classification was executed. The classified accuracy of 10-fold cross validation was 98.88%±0.0023%. Compared with those of other method in the literature, this new method is simpler, and better for effect and efficiency, and has stronger interpretability and stronger stability.
Traditional classifiers, such as support vector machine and Bayesian classifier, require data normalization for removing experimental batch effects, which limit their applications at the individual level. In this paper, we aim to build a classifier to distinguish lung cancer and non-cancer lung tissues (pneumonia and normal lung tissues). We identified gene pairs as signatures to build a classifier based on the within-sample relative expression orderings of gene pairs in a particular type of tissues (cancer or non-cancer). Using multiple independent datasets as the training data, including a total of 197 lung cancer cases and 189 non-cancer cases, we identified three gene pairs. Classifying a sample by the majority voting rule, the average accuracy reached 95.34% in the training data. Using multiple independent validation datasets, including a total of 251 lung cancer samples and 141 non-cancer samples without data normalization, the average accuracy was as high as 96.78%. The rank-based signature is robust against experimental batch effects and can be used to diagnose lung cancer using samples measured by different laboratories at the individual level.
To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.
Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.
Motor imagery (MI), motion intention of the specific body without actual movements, has attracted wide attention in fields as neuroscience. Classification algorithms for motor imagery electroencephalogram (MI-EEG) signals are able to distinguish different MI tasks based on the physiological information contained by the EEG signals, especially the features extracted from them. In recent years, there have been some new advances in classification algorithms for MI-EEG signals in terms of classifiers versus machine learning strategies. In terms of classifiers, traditional machine learning classifiers have been improved by some researchers, deep learning and Riemannian geometry classifiers have been widely applied as well. In terms of machine learning strategies, ensemble learning, adaptive learning, and transfer learning strategies have been utilized to improve classification accuracies or reach other targets. This paper reviewed the progress of classification algorithms for MI-EEG signals, summarized and evaluated the existing classifiers and machine learning strategies, to provide new ideas for developing classification algorithms with higher performance.