Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8–13 Hz), beta frequency band (14–30 Hz) and gamma frequency band (31–60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.
This study aims to optimize surface electromyography-based gesture recognition technique, focusing on the impact of muscle fatigue on the recognition performance. An innovative real-time analysis algorithm is proposed in the paper, which can extract muscle fatigue features in real time and fuse them into the hand gesture recognition process. Based on self-collected data, this paper applies algorithms such as convolutional neural networks and long short-term memory networks to provide an in-depth analysis of the feature extraction method of muscle fatigue, and compares the impact of muscle fatigue features on the performance of surface electromyography-based gesture recognition tasks. The results show that by fusing the muscle fatigue features in real time, the algorithm proposed in this paper improves the accuracy of hand gesture recognition at different fatigue levels, and the average recognition accuracy for different subjects is also improved. In summary, the algorithm in this paper not only improves the adaptability and robustness of the hand gesture recognition system, but its research process can also provide new insights into the development of gesture recognition technology in the field of biomedical engineering.
This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals, as well as the low recognition rates of conventional classifiers. A novel gesture recognition approach was proposed, which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers. The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach. Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input. Subsequently, a multi-view convolutional neural network model was constructed, utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals. Experimental results showed that the proposed method achieved recognition accuracies of 98.11% for 13 gestures and 98.75% for 12 multi-finger movements, significantly outperforming existing machine learning approaches. The proposed gesture recognition method, based on surface electromyography grayscale images and multi-view convolutional neural networks, demonstrates simplicity and efficiency, substantially improving recognition accuracy and exhibiting strong potential for practical applications.