Objective To investigate the cellular viability and mitochondrial reactive oxygen species (ROS) production of the Müller cells under high glucose condition, and explore the protection role of the 5,6-dihydrocyclopenta-1, 2-dithiole-3-thione (CPDT) on Müller cells. Methods Müller cells from Sprague Dawley rats were divided into 5 groups randomly, including 25 mmol/L normal glucose group (group A) and 65 mmol/L high glucose group (group B). High glucose group with 45, 60, 70 μmol/L CPDT and cultured them 72 hour was set as group C, D and E. Water soluble tetrazolium salt (WST)-8 was used to measure the cellular viability. Flow cytometry was used to measure the active oxygen and apoptosis index. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1), Bcl-2 and Bax protein were measured by Western blot. Results Compared with group A, the WST-8 showed that the viability of Müller cells apparently decreased in group B (t=39.59,P<0.05). Compared with the group B, the viability of Müller cells had changes in group C (t=0.97,P>0.05), but recovered in group D and E (t=−4.17, −7.52;P<0.05). Compared with group A, the FCM showed that the mitochondrial ROS levels was higher in group B (t=−30.99,P<0.05). Compared with group B, the mitochondrial ROS levels were decreased in group D (t=27.68,P<0.05). Compared with group A, Bax, Nrf2 and HO-1 increased (t=–11.03, –63.17, –11.44;P<0.05), while the bcl-2 decreased in group B (t=7.861,P<0.05). Compared with the group B, Nrf2, HO-1 and Bax decreased (t=15.11, 26.59, 6.27;P<0.05), while the bcl-2 increased in group D (t=−6.53,P<0.05). Conclusions Under the high glucose, CPDT may reduce the mitochondrial ROS levels and the expression of Nrf2, HO-1 and Bax protein of Müller cells. It may inhibit apoptosis through activating the Nrf2/HO-1 pathway and balancing of level of Bcl-2 protein and mitochondrial ROS.
ObjectiveTo observe the effect of tert-butyl hydroquinone (tBHQ) on type 2 diabetic rats retinal nuclear factor E2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Methods60 Sprague Dawley rats were randomly divided into normal control group (NC group, n=20) and model group (n=40). The rats in model group were intraperitoneal injected with streptozotocin (30 mg/kg) to establishing type 2 diabetic mellitus (DM). There were 35 rats successfully established and they were randomly divided into diabetic group (DM group, 17 rats) and tBHQ group (18 rats). The rats in tBHQ group were fed with high fat and sugar diet with 1% tBHQ. After 4 weeks and 12 weeks of tBHQ intervention, hematoxylin eosin staining of retinal sections, immunohistochemical staining and quantitative polymerase chain reaction (PCR) of Nrf2 and HO-1 were performed. ResultsIn tBHQ control, the retina of rats was normal and individual cells showed slightly edema at 4 weeks; the retinal structure of rats was clear and part of cells showed edema at 12 weeks. At 4 and 12 weeks, the expression of Nrf2 (t=3.115, 3.781) and HO-1 (t=3.485, 3.785) protein in DM group were higher than that in NC group (P < 0.05); the expression of Nrf2 (t=2.473, 2.576) and HO-1 (t=2.785, 2.879) protein in tBHQ group were higher than that in DM group (P < 0.05). In DM group, the expression of Nrf2 protein at 12 weeks was higher than that at 4 weeks (t=0.276, P < 0.05). In tBHQ group, the expression of Nrf2 (t=2.516) and HO-1 (t=2.776) protein at 12 weeks were higher than that at 4 weeks (P < 0.05). 4 and 12 weeks, the expression of Nrf2 (t=4.758, 4.285) and HO-1 (t=5.114, 4.514) mRNA in DM group were higher than that in NC group (P < 0.05); the expression of Nrf2 (t=5.133, 4.976) and HO-1 (t=4.758, 4.251) mRNA in tBHQ group were higher than that in DM group (P < 0.05). In DM gruop, the expression of Nrf2 protein at 12 weeks was higher than that at 4 weeks (t=5.114, P < 0.05). In tBHQ group, the expression of Nrf2 (t=4.292) and HO-1 (t=4.974) protein at 12 weeks were higher than that at 4 weeks (P < 0.05). ConclusiontBHQ intervention can increased the expression of Nrf2, HO-1 significantly in the retina of type 2 diabetic rats.