Objective?To evaluate Mental Imagery on rehabilitation of functions in patients with stroke. Methods?Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMbase, PEDro (www.pedro.org.au), OpenSIGLE, National Technical Information Service (NTIS), CNKI, VIP, Wanfang Data, and CBM were searched for the Randomized controlled trials (RCTs) of Mental Imagery on rehabilitation of functions in patients with stroke from the date of establishment of the databases to October 2010. The bibliographies of the included studies were searched, too. Three independent researchers evaluated the included studies using GRADE. The extracted data were analyzed by RevMan 5.0.25 and GRAEDprofiler 3.2.2. Results?A total 16 trials were discovered. Meta-analyses showed that at the end of 4th, 6th, and 8th, compared with conventional rehabilitation, the mental practice increased the score measured by FMA (WMD=7.81, 95%CI 1.96 to 13.65; WMD=13.89, 95%CI 4.53 to 23.25; and WMD=9.45, 95%CI 3.67 to 15.23, respectively) and ARAT (WMD=5.70, 95%CI 3.17 to 8.22, P=0.30). The 4 outcomes were all of low quality in the GRADE system. Conclusion?The current evidence shows mental practice could improve the upper limb function in patients after stroke, and the side effects of mental practice are not found in meta-analyses. Compared with other rehabilitative therapies, it is simper, of lower input costs, and of low operating costs. The clinicians should recommend it. Due to the limitations of the included studies, more large-sample, high-quality RCTs are required.
High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The DatasetⅢa from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful.
One of the key problems of brain-computer interfaces (BCI) is low signal-to-noise ratio (SNR) of electroencephalogram (EEG) signals. It affects recognition performance. To remove the artifact and noise, block under-determined blind source separation method based on the small number of channels is proposed in this paper. The non-stationary EEG signals are turned into block stationary signals by piecewise. The mixing matrix is estimated by the second-order under-determined blind mixing matrix identification. Then, the beamformer based on minimum mean square error separates the original sources of signals. Eventually, the reconstructed EEG for mixed signals removes the unwanted components of source signals to achieve suppressing artifact. The experiment results on the real motor imagery BCI indicated that the block under-determined blind source separation method could reconstruct signals and remove artifact effectively. The accuracy of motor imagery task of BCI has been greatly improved.
In the study of the scalp electroencephalogram (EEG)-based brain-computer interface (BCI), individual differences and complex background noise are two main factors which affect the stability of BCI system. For different subjects, therefore, optimization of BCI system parameters is necessary, including the optimal designing of temporal and spatial filters parameters as well as the classifier parameters. In order to improve the accuracy of BCI system, this paper proposes a new BCI information processing method, which combines the optimization design of independent component analysis spatial filter (ICA-SF) with the multiple sub-band features of EEG signals. The four subjects' three-class motor imagery EEG (MI-EEG) data collected in different periods were analyzed with the proposed method. Experimental results revealed that, during the inner and outer cross-validation of single subject as well as the subject-to-subject validation, the proposed multiple sub-band method always had higher average classification accuracy compared to those with single-band method, and the maximum difference could achieve 6.08% and 5.15%, respectively.
Aiming at feature selection problem of motor imagery task in brain computer interface (BCI), an algorithm based on mutual information and principal component analysis (PCA) for electroencephalogram (EEG) feature selection is presented. This algorithm introduces the category information, and uses the sum of mutual information matrices between features under different motor imagery category to replace the covariance matrix. The eigenvectors of the sum matrix represent the direction of the principal components and the eigenvalues of the sum matrix are used to determine the dimensionality of principal components. 2005 International BCI competition data set was used in our experiments, and four feature extraction methods were adopted, i. e. power spectrum estimation, continuous wavelet transform, wavelet packet decomposition and Hjorth parameters. The proposed feature selection algorithm was adopted to select and combine the most useful features for classification. The results showed that relative to the PCA algorithm, our algorithm had better performance in dimensionality reduction and in classification accuracy with the assistance of support vector machine classifier under the same dimensionality of principal components.
Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.
Most of electroencephalogram (EEG) acquired by multi-channels is difficult to be applied to the single-channel brain-computer interface (BCI) in the EEG analysis method based on left and right hand motor imagery. The present research applied an improved independent component analysis (ICA) method to realize pretreatment of the EEG effectively. Firstly, data drift was removed through linear drift correction. Secondly, the number of virtual channels were increased by applying delayed window data and some EEG artifacts which are namely electrooculogram (EOG) and electrocardiogram (ECG) were removed by ICA. Finally, the average instantaneous energy characteristics were calculated and classified through the instantaneous amplitude which was solved by applying Hilbert-Huang transform (HHT). The experiment proves that the method completes the EEG pretreatment and improves classification ratio of single-channel EEG, and lays a foundation of single-channel and portable BCI.
In the research of non-invasive brain-computer interface (BCI), independent component analysis (ICA) has been considered as a promising method of electroencephalogram (EEG) preprocessing and feature enhancement. However, there have been few investigations and implements about online ICA-BCI system up till now. This paper reports the investigation of the ICA-based motor imagery BCI (MIBCI) system, combining the characteristics of unsupervised learning of ICA and event-related desynchronization (ERD) related to motor imagery. We constructed a simple and practical method of ICA spatial filter calculation and discriminate criterion of three-type motor imageries in the study. To validate the online performance of proposed algorithms, an ICA-MIBCI experimental system was fully established based on NeuroScan EEG amplifier and VC++ platform. Four subjects participated in the experiment of MIBCI testing and two of them took part in the online experiment. The average classification accuracies of the three-type motor imageries reached 89.78% and 89.89% in the offline and online testing, respectively. The experimental results showed that the proposed algorithm produced high classification accuracy and required less time consumption, which would have a prospect of cross platform application.
Mental rotation cognitive tasks based on motor imagery (MI) have excellent predictability for individual’s motor imagery ability. In order to explore the relationship between motor imagery and behavioral data, in this study, we asked 10 right-handed male subjects to participate in the experiments of mental rotation tasks based on corresponding body parts pictures, and we therefore obtained the behavioral effects according to their reaction time (RT) and accuracy (ACC). Later on, we performed Pearson correlation analysis between the behavioral data and the scores of the Movement Imagery Questionnaire-Revised(MIQ-R). For each subject, the results showed significant angular and body location effect in the process of mental rotation. For all subjects, the results showed that there were correlations between the behavioral data and the scores of MIQ-R. Subjects who needed the longer reaction time represented lower motor imagery abilities in the same test, and vice versa. This research laid the foundation for the further study on brain electrophysiology in the process of mental rotation based on MI.
To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.