- Department of Neurology, First Hospital of Peking University , Beijing 100034, China;
Intracranial electrographic recording, especially stereoencephalography (SEEG), remains the gold standard for preoperative localization in epilepsy patients. However, this method is invasive and has low spatial resolution. In 1982, magnetoencephalography (MEG) began to be used in epilepsy clinics. MEG is not affected by the skull and scalp, can provide signals with high temporal and spatial resolution, and can be used to determine the epiletogensis zone (EZ) and the seizure onset zone (SOZ). Magnetic source imaging (MSI) is a method that superimposes the MEG data on a magnetic resonance image (MRI) and has become a major tool for presurgical localization. The applicability of MEG data has been largely improved by the development of many post-MRI processing methods in the last 20 years. In terms of the sensitivity of localization, MEG is superior to VEEG, MRI, PET and SPECT, despite inferiority to SEEG. MEG can also assist in the intracranial placement of electrodes and improve preoperative planning. Limitations of MEG include high cost, insensitivity to radiation source, and difficulty in locating deep EZ in the medial regions of the brain. These limitations could be overcome by new generations of equipment and improvement of algorithmics.
Citation: WANG Weiwei, WU Xun. The role of magnetoencephalography in presurgical focus localization in epilepsy. Journal of Epilepsy, 2023, 9(5): 423-432. doi: 10.7507/2096-0247.202305008 Copy
Copyright © the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
1. | Plumme C, Vagrim SJ, Woods WP, et al. Interictal and ictal source localization for epilepsy using high-density EEG with MEG: a prospective long-term study. Brain, 2019, 142(4): 932-951. |
2. | Poghosyan V, Rampp S, Wang ZI. Magnetoencephalography (MEG) in epilepsy and neurosurgery. Front Hum Neurosci, 2022 14, 16: 873153. |
3. | Tenney JR, Fujiwara H, Horn PS, et al. Comparision of magnetic source estimation to intracranial EEG, resection area and seizure outcome. Epilepsia, 2014, 55(11): 1854-1863. |
4. | Zhang C, Liu W, Zhang J, et al. Utility of magnetoencephalography combined with stereo-electroencephalography in resective epilepsy surgery: a 2-year follow-up. Seizure, 2022, 97: 94-101. |
5. | Marline G, Anne-Sophie D, Romain C, et al. Simultaneaus SEEG-MEG-EEG recoding overcome the SEEG limited spatial sampling. Epilepsy Res, 2016, 128: 68-72. |
6. | Murakami H, Wang ZI, Marashly A, et al. Correlating magnetoencephalography to Stereo-electroencephalography in patients under going epilepsy surgery. Brain, 2016, 139(11): 2935-2947. |
7. | Stefan H, Hummel C, Scheler G, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain, 2003, 126(Pt 11): 2396-2405. |
8. | Chaurasia N, Qach M, Gavvala J. Insular magnetoencephalography dipole clusters in patient with refractory focal epilepsy. J Clin Neurophysiology, 2021, 38(6): 542-546. |
9. | Vivekananda U, Cao C, Liu W, et al. The use of simultaneous stereo-electroencephalography and magnetoencephalography in localization the epileptogenic focus in refractory focal epilepsy. Brain Commun, 2021, 3(2): fcab072. |
10. | Otsubo H, Ogawa H, Pang E, et al. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expect Review of Neurotherapeutics, 2021, 21(11): 1225-1240. |
11. | Eliashiv DS, Elsas SM, Squires K, et al. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology, 2002, 59: (10) 1600-1610. |
12. | Vivechananda U. Redefining the role of magnetoencephalography in refractory epilepsy. Seizure, 2020, 83: 70-73. |
13. | Koster I, Ossenblok P, Brekelmans GJ, et al. Sensitivity of magnetoencephalography as a diagnostic tool for epilepsy: a prospective study. Epileptic Disord, 2022, 22(3): 264-272. |
14. | Iwasaki M, Pestana E, Burgess RC, et al. Detection of epileptiform activity by human interpretors: Blinded comparison between electroencephalography and magnetoencephalography. Epilepsia, 2005, 46(1): 59-68. |
15. | Lee JW, Tanaka N, Shiraishi H, et al. Evaluation of postoperative sharp wave forms through EEG and magnetoencephalography. J Clin Neurophysiol, 2010, 27(1): 7-11. |
16. | Alkawadri R, Burgess RC, Kakisaka Y, et al. Assessment of the utility of ictal magnetoencephalography in the localization of the epileptic seizure onset zone. JAMA Neurology, 2018, 75(10): 1264-1272. |
17. | Bagié A, Funke ME, Ebersole J, et al. American Clinical MEG society (ACMEGS) position statement: The value of magnetoencephalography MEG/Magnetic source imaging (MSI) in noninvasive presurgical evaluation of patient with medically intractable localization-related epilepsy. J Clin Neurophysiol, 2009, 26(4): 290-293. |
18. | Anand A, Magnotti JF, Smith DN, et al. Predictive value of magnetoencephalography in guiding the intracranial implant strategy for intractable epilepsy. J Neurosurg, 2022, 18: 1-11. |
19. | Mohamed IS, Toffa DH, Rohert M, et al. Utility of magnetic source imaging in nonlesional focal epilepsy: a prospective study. Neurosurg Focus, 2020, 48(4): E16. |
20. | Duez L, Tonnisi M, Hanson PO, et al. Electromagnetic source imaging in presurgical workup of patients with epilepsy: A prospective study. Neurology, 2019, 92(6): e576-e586. |
21. | Ebersole JS, Ebersole SM. Combining MEG and EEG source modeling in epilepsy evaluation. J Clin Neurophysiol, 2010, 27(6): 360-371. |
22. | Rampp S, Stefan H, Wu X, et al. Magnetoencephalography for epileptic focues localization in a series of 1000 cases. Brain, 2019, 142(10): 3059-3071. |
23. | Wilenius J, Lauronen L, Kirveskari E, et al. Interictal Magnetoencephalography in parietal lobe epilepsy—Comparison of equivalent current dipole and beamformer(SAMepi). Clin Neurophysiol Practice, 2020, 5: 64-72. |
24. | Pizzo F, Roehri N, Villaton SM, et al. Deep brain activities can be detected with magnetoencephalography. Nature Communication, 2019, 10(1): 971-984. |
25. | Pataraia E, Simos PG, Castillo EM, et al. Dose magnetoencephalography add to scalp vides-EEG as a diagnostic tool in epilepsy surgery? Neurology, 2004, 62: 943-948. |
26. | Colon JA, Ossenblok P, Nieuwenhuis L, et al. Use of rautine MEG in the primary diagnostic process of epilepsy. J Clin Neurophysiol, 2009, 26(5): 326-332. |
27. | Duez L, Berrizky S, Tankisi H, et al. Added diagnostic value of magnetoencephalography (MEG) in patient suspected for epilepsy, where previous extensive EEG work up was unrevealing. Clin Neurophysiol, 2016, 127(10): 3301-3305. |
28. | Edmonds BD, Weich W, Sagawa Y, et al. The role of magnetoencephalography and single photon emission computed tomography in evaluation of children with drug resistant epilepsy. J Clild Neurology, 2021, 36(8): 673-679. |
29. | Kakisaka Y, Kubota, Wang ZI, et al. Use of simultaneous depth and MEG recording may provide complementary information regarding the epileptogenic region. Epileptic Disord, 2012, 14(3): 298-303. |
30. | De Tiegé X, Carrtte E, Legras B, et al. Clinical added value of magnetic source imagings in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosury Psychiatry, 2012, 84(4): 417-423. |
31. | Knowlton RC, Elgavish R, Howell J, et al. Magnetic source imaging in epilepsy surgery: A prospective study. Ann Neurol, 2006, 59(5): 835-842. |
32. | Rampp S, Kaltenhäuser M, Weigel D, et al. MEG correlates of epileptic high gamma oseillations in invasive EEG. Epilepsia, 2010, 51(8): 1638-1642. |
33. | Schneider F, Alexopoulos AV, Wang Z, et al. Magnetic source imaging in nonlesional neocortical epilepsy: Additional volue and comparsion with IC EEG. Epilepsy & Behavior, 2012, 24(2): 234-240. |
34. | Kharker S, Knowlton R. Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy & Behavior, 2015, 46: 19-26. |
35. | Wheless JW, Willmore LJ, Breier JI, et al. A comparison of magnetoencephalography, MRI, and V-EEG in patient evaluated for epilepsy surgery. Epilepsia, 1999, 40(7): 931-941. |
36. | Juárez-Martinez EL, Nissen IA, Idema S, et al. Virtual localization of the seizure onset zone: Using non-invasive MEG virtual electrodes at stereo-EEG electrode location in refractory epilepsy patients. Neuro Image Clinical, 2018, 19: 758-766. |
37. | Liu W, Tian S, Zhang J, et al. Utility of stereo-electroencephalography recording guided by magnetoencephalography in the surgical treatment of epilepsy patients with negative magnetic resonance imaging result. International J Neuroseience, 2019, 129(1): 1045-1052. |
38. | Gao R, Yu T, Xu C, et al. The value of magnetoencephalography for stereo-EEG -guided radiofrequency thermocoagulation in MRI-negative epilepsy. Epilepsy Research, 2020, 163: 106322. |
39. | Yin C, Zhang X, Chen Z, et al. Detection and localization of interictal ripples with magnetoencephalography in the presurgical evaluation of drug-resistant insular epilepsy. Brain Research, 2019, 1, 1706: 147-156. |
40. | Velmurugan J, Nagarajin SS, Mariyappa N, et al. magnetoencephalographic imaging of ictal high-frequency oscillation (80-200 Hz) in pharmacologically resistant focal epilepsy. Epilepsia, 2018, 59(1): 190-202. |
41. | Nair RR, Otsubo H, Shroff HH, et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia, 2007, 48(1): 149-157. |
42. | EI Tahy R, Wang ZI, Thandar A, et al. Magnetoencephalography and ictal SPECT in patient with failed epilepsy surgery. Clin Neurophysial, 2018, 129(8): 1651-1657. |
43. | Guo K, Wan J, Cui B, et al. [18F]FDG/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. European Radiology, 2022, 32(5): 3024-3034. |
44. | Vadera S, Jehi L, Burgess RC, et al. Correlation between magnetoencephalography-based“cluslerectomy”and postoperative seizure freedom. Neurosury Focus, 2013, 34(6): E9. |
45. | Mohamed IS, Otsuho H, Ochi A, et al. Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia, 2007, 48(11): 2150-2159. |
46. | Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizure after epilepsy surgery. Acta Neurol Scand, 1998, 89(1): 1-7. |
47. | Park CK, Hwang SJ, Jung NY, et al. Magnetoencephalography as a prognostic tool in patient with medically intractable temporal lobe epilepsy. World Neurosurg. 2019, 123: e753-e759. |
48. | Martire DJ, Wong S, Workewych A, et al. Temporal-plus epilepsy in children: A connectomic analysis in magnetoencephalography. Epilepsia, 2020, 61(8): 1691-1700. |
49. | Agari D, Jin K, Kakisaka Y, et al. Magnetoencephalography to confirm epileptoform discharge mimicking small sharp spike in temporal lobe epilepsy. Clin Neurophysiol , 2021, 132(8): 1785-1789. |
50. | Pellegrino G, Xu M, Alkuwait A, et al. Effects of independent component analsis on magnetoencephalography source localization in presurgical frontal lobe epilepsy patients. Front Neurol, 2020, 11: 479-490. |
51. | Mohamed IS, Gibbs SA, Robect M, et al. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia, 2013, 54(11): 1950-1959. |
52. | Kakisaka Y, Alkawadri R, Wang ZI, et al. Sensitivity of scalp 10-20 EEG and magnetoencephalography. Epileptic Disord, 2013, 15(1): 27-31. |
53. | Ahmed R, Otsubo H, Corter Ⅲ S, et al. Diagnostic evaluation and surgical management of pediatric insular epilepsy utilizing magnetoencephalography and invasive EEG monitoring. Epilepsy Research , 2018, 140: 72-81. |
54. | Kakisaka Y, Iwasaki M, Alexopoulos AV, et al. Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Research, 2012, 102(1-2): 71-77. |
55. | Kakisaka Y, Iwasaki M, Haginoya K, et al. Somatotopic distribution of perirolandic spikes may predict prognosis in pediatric-onset epilepsy with sensorimotor seizure. Clin Neurophysiology, 2011, 122(5): 869-873. |
56. | He X, Zhou J, Teng P, et al. The impact of MEG results on surgical outcome in patients with drug-resistant epilepsy associated with focal encephalomalacia: a single-center experience. J Neurology, 2020, 267(3): 812-822. |
57. | Paurmotabbed H, Wheless JW, Babajanu-Feremi A. Lateralization of epilepsy using intrahemispheric brain networks based on resting-state MEG data. Hum Brain Mapp, 2020, 41(11): 2964-2979. |
58. | Nissen IA, Stam CJ, Reijmeveled JC, et al. Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia, 2017, 58(1): 134-148. |
59. | van Dellen E, Dauw L, Hillebsand A, et al. Epilepsy surgery autcome and functional network alteration in longitudinal MEG: a minimum spanning analysis. Neuro Image, 2014, 86: 354-363. |
60. | Aydin U, Pellegrimo G, AlioBK, et al. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patient. J Neural Eng, 2020, 17(3): 035007. |
61. | Ramaraju S, Wang Y, Sinka N, et al. Removal of interictal MEG-derived network hubs is associated with postoperative seizure freedom. Front Neurol, 2020, 11: 563847. |
- 1. Plumme C, Vagrim SJ, Woods WP, et al. Interictal and ictal source localization for epilepsy using high-density EEG with MEG: a prospective long-term study. Brain, 2019, 142(4): 932-951.
- 2. Poghosyan V, Rampp S, Wang ZI. Magnetoencephalography (MEG) in epilepsy and neurosurgery. Front Hum Neurosci, 2022 14, 16: 873153.
- 3. Tenney JR, Fujiwara H, Horn PS, et al. Comparision of magnetic source estimation to intracranial EEG, resection area and seizure outcome. Epilepsia, 2014, 55(11): 1854-1863.
- 4. Zhang C, Liu W, Zhang J, et al. Utility of magnetoencephalography combined with stereo-electroencephalography in resective epilepsy surgery: a 2-year follow-up. Seizure, 2022, 97: 94-101.
- 5. Marline G, Anne-Sophie D, Romain C, et al. Simultaneaus SEEG-MEG-EEG recoding overcome the SEEG limited spatial sampling. Epilepsy Res, 2016, 128: 68-72.
- 6. Murakami H, Wang ZI, Marashly A, et al. Correlating magnetoencephalography to Stereo-electroencephalography in patients under going epilepsy surgery. Brain, 2016, 139(11): 2935-2947.
- 7. Stefan H, Hummel C, Scheler G, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain, 2003, 126(Pt 11): 2396-2405.
- 8. Chaurasia N, Qach M, Gavvala J. Insular magnetoencephalography dipole clusters in patient with refractory focal epilepsy. J Clin Neurophysiology, 2021, 38(6): 542-546.
- 9. Vivekananda U, Cao C, Liu W, et al. The use of simultaneous stereo-electroencephalography and magnetoencephalography in localization the epileptogenic focus in refractory focal epilepsy. Brain Commun, 2021, 3(2): fcab072.
- 10. Otsubo H, Ogawa H, Pang E, et al. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expect Review of Neurotherapeutics, 2021, 21(11): 1225-1240.
- 11. Eliashiv DS, Elsas SM, Squires K, et al. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology, 2002, 59: (10) 1600-1610.
- 12. Vivechananda U. Redefining the role of magnetoencephalography in refractory epilepsy. Seizure, 2020, 83: 70-73.
- 13. Koster I, Ossenblok P, Brekelmans GJ, et al. Sensitivity of magnetoencephalography as a diagnostic tool for epilepsy: a prospective study. Epileptic Disord, 2022, 22(3): 264-272.
- 14. Iwasaki M, Pestana E, Burgess RC, et al. Detection of epileptiform activity by human interpretors: Blinded comparison between electroencephalography and magnetoencephalography. Epilepsia, 2005, 46(1): 59-68.
- 15. Lee JW, Tanaka N, Shiraishi H, et al. Evaluation of postoperative sharp wave forms through EEG and magnetoencephalography. J Clin Neurophysiol, 2010, 27(1): 7-11.
- 16. Alkawadri R, Burgess RC, Kakisaka Y, et al. Assessment of the utility of ictal magnetoencephalography in the localization of the epileptic seizure onset zone. JAMA Neurology, 2018, 75(10): 1264-1272.
- 17. Bagié A, Funke ME, Ebersole J, et al. American Clinical MEG society (ACMEGS) position statement: The value of magnetoencephalography MEG/Magnetic source imaging (MSI) in noninvasive presurgical evaluation of patient with medically intractable localization-related epilepsy. J Clin Neurophysiol, 2009, 26(4): 290-293.
- 18. Anand A, Magnotti JF, Smith DN, et al. Predictive value of magnetoencephalography in guiding the intracranial implant strategy for intractable epilepsy. J Neurosurg, 2022, 18: 1-11.
- 19. Mohamed IS, Toffa DH, Rohert M, et al. Utility of magnetic source imaging in nonlesional focal epilepsy: a prospective study. Neurosurg Focus, 2020, 48(4): E16.
- 20. Duez L, Tonnisi M, Hanson PO, et al. Electromagnetic source imaging in presurgical workup of patients with epilepsy: A prospective study. Neurology, 2019, 92(6): e576-e586.
- 21. Ebersole JS, Ebersole SM. Combining MEG and EEG source modeling in epilepsy evaluation. J Clin Neurophysiol, 2010, 27(6): 360-371.
- 22. Rampp S, Stefan H, Wu X, et al. Magnetoencephalography for epileptic focues localization in a series of 1000 cases. Brain, 2019, 142(10): 3059-3071.
- 23. Wilenius J, Lauronen L, Kirveskari E, et al. Interictal Magnetoencephalography in parietal lobe epilepsy—Comparison of equivalent current dipole and beamformer(SAMepi). Clin Neurophysiol Practice, 2020, 5: 64-72.
- 24. Pizzo F, Roehri N, Villaton SM, et al. Deep brain activities can be detected with magnetoencephalography. Nature Communication, 2019, 10(1): 971-984.
- 25. Pataraia E, Simos PG, Castillo EM, et al. Dose magnetoencephalography add to scalp vides-EEG as a diagnostic tool in epilepsy surgery? Neurology, 2004, 62: 943-948.
- 26. Colon JA, Ossenblok P, Nieuwenhuis L, et al. Use of rautine MEG in the primary diagnostic process of epilepsy. J Clin Neurophysiol, 2009, 26(5): 326-332.
- 27. Duez L, Berrizky S, Tankisi H, et al. Added diagnostic value of magnetoencephalography (MEG) in patient suspected for epilepsy, where previous extensive EEG work up was unrevealing. Clin Neurophysiol, 2016, 127(10): 3301-3305.
- 28. Edmonds BD, Weich W, Sagawa Y, et al. The role of magnetoencephalography and single photon emission computed tomography in evaluation of children with drug resistant epilepsy. J Clild Neurology, 2021, 36(8): 673-679.
- 29. Kakisaka Y, Kubota, Wang ZI, et al. Use of simultaneous depth and MEG recording may provide complementary information regarding the epileptogenic region. Epileptic Disord, 2012, 14(3): 298-303.
- 30. De Tiegé X, Carrtte E, Legras B, et al. Clinical added value of magnetic source imagings in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosury Psychiatry, 2012, 84(4): 417-423.
- 31. Knowlton RC, Elgavish R, Howell J, et al. Magnetic source imaging in epilepsy surgery: A prospective study. Ann Neurol, 2006, 59(5): 835-842.
- 32. Rampp S, Kaltenhäuser M, Weigel D, et al. MEG correlates of epileptic high gamma oseillations in invasive EEG. Epilepsia, 2010, 51(8): 1638-1642.
- 33. Schneider F, Alexopoulos AV, Wang Z, et al. Magnetic source imaging in nonlesional neocortical epilepsy: Additional volue and comparsion with IC EEG. Epilepsy & Behavior, 2012, 24(2): 234-240.
- 34. Kharker S, Knowlton R. Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy & Behavior, 2015, 46: 19-26.
- 35. Wheless JW, Willmore LJ, Breier JI, et al. A comparison of magnetoencephalography, MRI, and V-EEG in patient evaluated for epilepsy surgery. Epilepsia, 1999, 40(7): 931-941.
- 36. Juárez-Martinez EL, Nissen IA, Idema S, et al. Virtual localization of the seizure onset zone: Using non-invasive MEG virtual electrodes at stereo-EEG electrode location in refractory epilepsy patients. Neuro Image Clinical, 2018, 19: 758-766.
- 37. Liu W, Tian S, Zhang J, et al. Utility of stereo-electroencephalography recording guided by magnetoencephalography in the surgical treatment of epilepsy patients with negative magnetic resonance imaging result. International J Neuroseience, 2019, 129(1): 1045-1052.
- 38. Gao R, Yu T, Xu C, et al. The value of magnetoencephalography for stereo-EEG -guided radiofrequency thermocoagulation in MRI-negative epilepsy. Epilepsy Research, 2020, 163: 106322.
- 39. Yin C, Zhang X, Chen Z, et al. Detection and localization of interictal ripples with magnetoencephalography in the presurgical evaluation of drug-resistant insular epilepsy. Brain Research, 2019, 1, 1706: 147-156.
- 40. Velmurugan J, Nagarajin SS, Mariyappa N, et al. magnetoencephalographic imaging of ictal high-frequency oscillation (80-200 Hz) in pharmacologically resistant focal epilepsy. Epilepsia, 2018, 59(1): 190-202.
- 41. Nair RR, Otsubo H, Shroff HH, et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia, 2007, 48(1): 149-157.
- 42. EI Tahy R, Wang ZI, Thandar A, et al. Magnetoencephalography and ictal SPECT in patient with failed epilepsy surgery. Clin Neurophysial, 2018, 129(8): 1651-1657.
- 43. Guo K, Wan J, Cui B, et al. [18F]FDG/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. European Radiology, 2022, 32(5): 3024-3034.
- 44. Vadera S, Jehi L, Burgess RC, et al. Correlation between magnetoencephalography-based“cluslerectomy”and postoperative seizure freedom. Neurosury Focus, 2013, 34(6): E9.
- 45. Mohamed IS, Otsuho H, Ochi A, et al. Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia, 2007, 48(11): 2150-2159.
- 46. Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizure after epilepsy surgery. Acta Neurol Scand, 1998, 89(1): 1-7.
- 47. Park CK, Hwang SJ, Jung NY, et al. Magnetoencephalography as a prognostic tool in patient with medically intractable temporal lobe epilepsy. World Neurosurg. 2019, 123: e753-e759.
- 48. Martire DJ, Wong S, Workewych A, et al. Temporal-plus epilepsy in children: A connectomic analysis in magnetoencephalography. Epilepsia, 2020, 61(8): 1691-1700.
- 49. Agari D, Jin K, Kakisaka Y, et al. Magnetoencephalography to confirm epileptoform discharge mimicking small sharp spike in temporal lobe epilepsy. Clin Neurophysiol , 2021, 132(8): 1785-1789.
- 50. Pellegrino G, Xu M, Alkuwait A, et al. Effects of independent component analsis on magnetoencephalography source localization in presurgical frontal lobe epilepsy patients. Front Neurol, 2020, 11: 479-490.
- 51. Mohamed IS, Gibbs SA, Robect M, et al. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia, 2013, 54(11): 1950-1959.
- 52. Kakisaka Y, Alkawadri R, Wang ZI, et al. Sensitivity of scalp 10-20 EEG and magnetoencephalography. Epileptic Disord, 2013, 15(1): 27-31.
- 53. Ahmed R, Otsubo H, Corter Ⅲ S, et al. Diagnostic evaluation and surgical management of pediatric insular epilepsy utilizing magnetoencephalography and invasive EEG monitoring. Epilepsy Research , 2018, 140: 72-81.
- 54. Kakisaka Y, Iwasaki M, Alexopoulos AV, et al. Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Research, 2012, 102(1-2): 71-77.
- 55. Kakisaka Y, Iwasaki M, Haginoya K, et al. Somatotopic distribution of perirolandic spikes may predict prognosis in pediatric-onset epilepsy with sensorimotor seizure. Clin Neurophysiology, 2011, 122(5): 869-873.
- 56. He X, Zhou J, Teng P, et al. The impact of MEG results on surgical outcome in patients with drug-resistant epilepsy associated with focal encephalomalacia: a single-center experience. J Neurology, 2020, 267(3): 812-822.
- 57. Paurmotabbed H, Wheless JW, Babajanu-Feremi A. Lateralization of epilepsy using intrahemispheric brain networks based on resting-state MEG data. Hum Brain Mapp, 2020, 41(11): 2964-2979.
- 58. Nissen IA, Stam CJ, Reijmeveled JC, et al. Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia, 2017, 58(1): 134-148.
- 59. van Dellen E, Dauw L, Hillebsand A, et al. Epilepsy surgery autcome and functional network alteration in longitudinal MEG: a minimum spanning analysis. Neuro Image, 2014, 86: 354-363.
- 60. Aydin U, Pellegrimo G, AlioBK, et al. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patient. J Neural Eng, 2020, 17(3): 035007.
- 61. Ramaraju S, Wang Y, Sinka N, et al. Removal of interictal MEG-derived network hubs is associated with postoperative seizure freedom. Front Neurol, 2020, 11: 563847.
-
Previous Article
Research progress of health management model for epileptic patients in the application -
Next Article
基于山东省脑电图医疗质量控制体系的初步建设与实践