1. |
2023 Alzheimer's disease facts and figures. Alzheimers Dement, 2023, 19(4): 1598-1695.
|
2. |
Ren R, Qi J, Lin S, et al. The China Alzheimer report 2022. Gen Psychiatr, 2022, 35(1): e100751.
|
3. |
Jia J, Wei C, Chen S, et al. The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers Dement, 2018, 14(4): 483-491.
|
4. |
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer's disease. Lancet, 2016, 388(10043): 505-517.
|
5. |
中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021. 中华神经科杂志, 2022, 55(5): 421-440.
|
6. |
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 2011, 7(3): 263-269.
|
7. |
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 2011, 7(3): 280-292.
|
8. |
Aisen PS. Q&A: The Alzheimer's disease neuroimaging initiative. BMC Med, 2011, 9: 101.
|
9. |
Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl, 1998, 53: 127-40.
|
10. |
Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain, 2009, 132(Pt 4): 1067-1077.
|
11. |
Newby D, Orgeta V, Marshall CR, et al. Artificial intelligence for dementia prevention. Alzheimers Dement, 2023, 19(12): 5952-5969.
|
12. |
Kim HW, Lee HE, Lee S, et al. Slice-selective learning for Alzheimer's disease classification using a generative adversarial network: a feasibility study of external validation. Eur J Nucl Med Mol Imaging, 2020, 47(9): 2197-2206.
|
13. |
Suk HI, Lee SW, Shen D, et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage, 2014, 101: 569-582.
|
14. |
Guo C, Ashrafian H, Ghafur S, et al. Challenges for the evaluation of digital health solutions-a call for innovative evidence generation approaches. NPJ Digit Med, 2020, 3: 110.
|
15. |
Jackson D, Turner R. Power analysis for random-effects meta-analysis. Res Synth Methods, 2017, 8(3): 290-302.
|
16. |
McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA, 2018, 319(4): 388-396.
|
17. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
18. |
Um O, Cn O. Evaluating measures of indicators of diagnostic test performance: fundamental meanings and formulars. J Biometri Biostati, 2012, 3(1): 258.
|
19. |
Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ, 2003, 327(7414): 557-560.
|
20. |
Hinrichs C, Singh V, Mukherjee L, et al. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 2009, 48(1): 138-149.
|
21. |
Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage, 2011, 55(3): 856-867.
|
22. |
Yun HJ, Kwak K, Lee JM, et al. Multimodal discrimination of Alzheimer's disease based on regional cortical atrophy and hypometabolism. PLoS One, 2015, 10(6): e0129250.
|
23. |
Vemuri P, Gunter JL, Senjem ML, et al. Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage, 2008, 39(3): 1186-1197.
|
24. |
Tosun D, Schuff N, Rabinovici GD, et al. Diagnostic utility of ASL-MRI and FDG-PET in the behavioral variant of FTD and AD. Ann Clin Transl Neurol, 2016, 3(10): 740-751.
|
25. |
Sayeed A, Petrou M, Spyrou N, et al. Diagnostic features of Alzheimer's disease extracted from PET sinograms. Phys Med Biol, 2002, 47(1): 137-148.
|
26. |
Pan X, Adel M, Fossati C, et al. Multiscale spatial gradient features for 18F-FDG PET image-guided diagnosis of Alzheimer's disease. Comput Methods Programs Biomed, 2019, 180: 105027.
|
27. |
Padilla P, López M, Górriz JM, et al. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer's disease. IEEE Trans Med Imaging, 2012, 31(2): 207-216.
|
28. |
Ni YC, Tseng FP, Pai MC, et al. Detection of Alzheimer's disease using ECD SPECT images by transfer learning from FDG PET. Ann Nucl Med, 2021, 35(8): 889-899.
|
29. |
Magnin B, Mesrob L, Kinkingnéhun S, et al. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 2009, 51(2): 73-83.
|
30. |
Lu D, Popuri K, Ding GW, et al. Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer's disease. Med Image Anal, 2018, 46: 26-34.
|
31. |
Liu M, Cheng D, Yan W, et al. Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform, 2018, 12: 35.
|
32. |
Li R, Perneczky R, Yakushev I, et al. Gaussian mixture models and model selection for [18f] fluorodeoxyglucose positron emission tomography classification in Alzheimer's disease. PLoS One, 2015, 10(4): e0122731.
|
33. |
Lerch JP, Pruessner J, Zijdenbos AP, et al. Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiol Aging, 2008, 29(1): 23-30.
|
34. |
Kim HW, Lee HE, Oh K, et al. Multi-slice representational learning of convolutional neural network for Alzheimer's disease classification using positron emission tomography. Biomed Eng Online, 2020, 19(1): 70.
|
35. |
Katako A, Shelton P, Goertzen AL, et al. Machine learning identified an Alzheimer's disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson's disease dementia. Sci Rep, 2018, 8(1): 13236.
|
36. |
Ismail WN, Rajeena PPF, Ali MAS. A meta-heuristic multi-objective optimization method for Alzheimer's disease detection based on multi-modal data. Mathematics, 2023, 11(4): 764.
|
37. |
Illán J, Górriz J. 18F-FDG-FDG PET imaging analysis for computer aided Alzheimer's diagnosis. Information Sciences, 2011, 181(4): 903-916.
|
38. |
Gray KR, Wolz R, Heckemann RA, et al. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. Neuroimage, 2012, 60(1): 221-229.
|
39. |
Gray KR, Aljabar P, Heckemann RA, et al. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage, 2013, 65: 167-175.
|
40. |
Feng C, Elazab A, Yang P, et al. Deep learning framework for Alzheimer's disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access, 2019, 7(99): 63605-63618.
|
41. |
Cuingnet R, Gerardin E, Tessieras J, et al. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage, 2011, 56(2): 766-781.
|
42. |
Chen L, Qiao H, Zhu F. Alzheimer's disease diagnosis with brain structural MRI using multiview-slice attention and 3D convolution neural network. Front Aging Neurosci, 2022, 14: 871706.
|
43. |
Yang BH, Chen C, Chou WH, et al. Classification of Alzheimer's disease from 18F-FDG and 11C-PiB PET imaging biomarkers using support vector machine. J Med Biol Eng, 2020, 40(4): 545-554.
|
44. |
Hinrichs C, Singh V, Xu G, et al. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage, 2011, 55(2): 574-589.
|
45. |
Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med, 2007, 357(22): 2277-2284.
|
46. |
Korley FK, Pham JC, Kirsch TD. Use of advanced radiology during visits to US emergency departments for injury-related conditions, 1998-2007. JAMA, 2010, 304(13): 1465-1471.
|
47. |
McDonald RJ, Schwartz KM, Eckel LJ, et al. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol, 2015, 22(9): 1191-1198.
|
48. |
Goldberg CB, Adams L, Blumenthal D, et al. To do no harm - and the most good - with AI in health care. Nat Med, 2024, 30(3): 623-627.
|
49. |
Erickson BJ. Basic artificial intelligence techniques: machine learning and deep learning. Radiol Clin North Am, 2021, 59(6): 933-940.
|
50. |
Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med, 2020, 26(9): 1364-1374.
|
51. |
Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health, 2020, 2(10): e549-e560.
|
52. |
Balki I, Amirabadi A, Levman J, et al. Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J, 2019, 70(4): 344-353.
|