1. |
Wagenlehner FME, Bjerklund Johansen TE, Cai T, et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol, 2020, 17(10): 586-600.
|
2. |
Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 2015, 13(5): 269-284.
|
3. |
Qiao LD, Chen S, Yang Y, et al. Characteristics of urinary tract infection pathogens and their in vitro susceptibility to antimicrobial agents in China: data from a multicenter study. BMJ Open, 2013, 3(12): e004152.
|
4. |
Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci, 2019, 76(3): 473-493.
|
5. |
Paalanne N, Husso A, Salo J, et al. Intestinal microbiome as a risk factor for urinary tract infections in children. Eur J Clin Microbiol Infect Dis, 2018, 37(10): 1881-1891.
|
6. |
Magruder M, Edusei E, Zhang L, et al. Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes, 2020, 12(1): 1805281.
|
7. |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA, 2017, 318(19): 1925-1931.
|
8. |
Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet, 2021, 53(2): 156-165.
|
9. |
Xia D, Wang J, Zhao X, et al. Association between gut microbiota and benign prostatic hyperplasia: a two-sample Mendelian randomization study. Front Cell Infect Microbiol, 2023, 13: 1248381.
|
10. |
Sanna S, Kurilshikov A, van der Graaf A, et al. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat Genet, 2022, 54(2): 100-106.
|
11. |
Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA, 2021, 326(16): 1614-1621.
|
12. |
Sekula P, Del Greco M F, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol, 2016, 27(11): 3253-3265.
|
13. |
Liu B, Ye D, Yang H, et al. Two-sample Mendelian randomization analysis investigates causal associations between gut microbial genera and inflammatory bowel disease, and specificity causal associations in ulcerative colitis or Crohn's disease. Front Immunol, 2022, 13: 921546.
|
14. |
Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet, 2019, 51(4): 600-605.
|
15. |
Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med, 2011, 30(11): 1312-1323.
|
16. |
Papadimitriou N, Dimou N, Tsilidis KK, et al. Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nat Commun, 2020, 11(1): 597.
|
17. |
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013, 37(7): 658-665.
|
18. |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
|
19. |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
|
20. |
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol, 2017, 46(6): 1985-1998.
|
21. |
Milne RL, Kuchenbaecker KB, Michailidou K, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet, 2017, 49(12): 1767-1778.
|
22. |
Li P, Wang H, Guo L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study. BMC Med, 2022, 20(1): 443.
|
23. |
Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2023, 4: 186.
|
24. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
|
25. |
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet, 2017, 13(11): e1007081.
|
26. |
Bai X, Wei H, Liu W, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut, 2022, 71(12): 2439-2450.
|
27. |
Radjabzadeh D, Bosch JA, Uitterlinden AG, et al. Gut microbiome-wide association study of depressive symptoms. Nat Commun, 2022, 13(1): 7128.
|
28. |
Lohia S, Vlahou A, Zoidakis J. Microbiome in chronic kidney disease (CKD): an omics perspective. Toxins (Basel), 2022, 14(3): 176.
|
29. |
Peter-Bibb TK, Tokeshi J. Hawai'i's first published case of Eggerthella lenta sepsis. Hawaii J Health Soc Welf, 2020, 79(11): 326-328.
|
30. |
Jiang S, E J, Wang D, et al. Eggerthella lenta bacteremia successfully treated with ceftizoxime: case report and review of the literature. Eur J Med Res, 2021, 26(1): 111.
|
31. |
Alexander M, Ang QY, Nayak RR, et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe, 2022, 30(1): 17-30.
|
32. |
Henke MT, Kenny DJ, Cassilly CD, et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA, 2019, 116(26): 12672-12677.
|
33. |
Tong Y, Zheng L, Qing P, et al. Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. Front Cell Infect Microbiol, 2020, 9: 475.
|
34. |
Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest, 2015, 125(3): 926-938.
|
35. |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63.
|
36. |
Worby CJ, Schreiber HL, Straub TJ, et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol, 2022, 7(5): 630-639.
|
37. |
Magruder M, Sholi AN, Gong C, et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun, 2019, 10(1): 5521.
|
38. |
Klein RD, Hultgren SJ. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol, 2020, 18(4): 211-226.
|
39. |
Smith HS, Hughes JP, Hooton TM, et al. Antecedent antimicrobial use increases the risk of uncomplicated cystitis in young women. Clin Infect Dis, 1997, 25(1): 63-68.
|
40. |
van Nieuwkoop C. Antibiotic treatment of urinary tract infection and its impact on the gut microbiota. Lancet Infect Dis, 2022, 22(3): 307-309.
|
41. |
Biehl LM, Cruz Aguilar R, Farowski F, et al. Fecal microbiota transplantation in a kidney transplant recipient with recurrent urinary tract infection. Infection, 2018, 46(6): 871-874.
|
42. |
Jeney SES, Lane F, Oliver A, et al. Fecal microbiota transplantation for the treatment of refractory recurrent urinary tract infection. Obstet Gynecol, 2020, 136(4): 771-773.
|
43. |
Tariq R, Pardi DS, Tosh PK, et al. Fecal microbiota transplantation for recurrent clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis, 2017, 65(10): 1745-1747.
|