1. |
Haider ZF, von Stumm S. Predicting educational and social-emotional outcomes in emerging adulthood from intelligence, personality, and socioeconomic status. J Pers Soc Psychol, 2022, 123(6): 1386-1406.
|
2. |
Li D, Zhou L, Cao Z, et al. Associations of environmental factors with neurodegeneration: an exposome-wide Mendelian randomization investigation. Ageing Res Rev, 2024, 95: 102254.
|
3. |
Estes RE, Lin B, Khera A, et al. Lipid metabolism influence on neurodegenerative disease progression: is the vehicle as important as the cargo. Front Mol Neurosci, 2021, 14: 788695.
|
4. |
Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med, 2011, 365(19): 1812-1823.
|
5. |
O'Donnell VB, Ekroos K, Liebisch G, et al. Lipidomics: current state of the art in a fast moving field. Wiley Interdiscip Rev Syst Biol Med, 2020, 12(1): e1466.
|
6. |
Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res, 2017, 189: 13-29.
|
7. |
De Jager PL, Bennett DA. An inflection point in gene discovery efforts for neurodegenerative diseases: from syndromic diagnoses toward endophenotypes and the epigenome. JAMA Neurol, 2013, 70(6): 719-726.
|
8. |
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, et al. Lipid and lipid raft alteration in aging and neurodegenerative diseases: a window for the development of new biomarkers. Int J Mol Sci, 2019, 20(15): 3810.
|
9. |
Chew H, Solomon VA, Fonteh AN. Involvement of lipids in Alzheimer's disease pathology and potential therapies. Front Physiol, 2020, 11: 598.
|
10. |
Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods, 2019, 10(4): 486-496.
|
11. |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8): 1133-1163.
|
12. |
Glymour MM, Tchetgen Tchetgen EJ, Robins JM. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am J Epidemiol, 2012, 175(4): 332-339.
|
13. |
Ottensmann L, Tabassum R, Ruotsalainen SE, et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun, 2023, 14(1): 6934.
|
14. |
Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics, 2015, 31(21): 3555-3557.
|
15. |
Zhang Y, Zhang X, Chen D, et al. Causal associations between gut microbiome and cardiovascular disease: a Mendelian randomization study. Front Cardiovasc Med, 2022, 9: 971376.
|
16. |
Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2023, 4: 186.
|
17. |
Bowden J, Spiller W, Del Greco M F, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. Int J Epidemiol, 2018, 47(6): 2100.
|
18. |
Gronau QF, Wagenmakers EJ. Limitations of Bayesian leave-one-out cross-validation for model selection. Comput Brain Behav, 2019, 2(1): 1-11.
|
19. |
Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife, 2018, 7: e34408.
|
20. |
Alecu I, Bennett SAL. Dysregulated lipid metabolism and its role in α-synucleinopathy in Parkinson's disease. Front Neurosci, 2019, 13: 328.
|
21. |
Gouras GK, Tampellini D, Takahashi RH, et al. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol, 2010, 119(5): 523-541.
|
22. |
Kurouski D. Elucidating the role of lipids in the aggregation of amyloidogenic proteins. Acc Chem Res, 2023, 56(21): 2898-2906.
|
23. |
Shanks HRC, Onuska KM, Barupal DK, et al. Serum unsaturated phosphatidylcholines predict longitudinal basal forebrain degeneration in Alzheimer's disease. Brain Commun, 2022, 4(6): fcac318.
|
24. |
Batra R, Arnold M, Wörheide MA, et al. The landscape of metabolic brain alterations in Alzheimer's disease. Alzheimers Dement, 2023, 19(3): 980-998.
|
25. |
Bárány M, Chang YC, Arús C, et al. Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain. Lancet, 1985, 1(8427): 517.
|
26. |
Miatto O, Gonzalez RG, Buonanno F, et al. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer's disease. Can J Neurol Sci, 1986, 13(4 Suppl): 535-539.
|
27. |
Lolicato F, Nickel W, Haucke V, et al. Phosphoinositide switches in cell physiology - from molecular mechanisms to disease. J Biol Chem, 2024, 300(3): 105757.
|
28. |
Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 2013, 93(3): 1019-1137.
|
29. |
Gao Y, Ye S, Tang Y, et al. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem Int, 2023, 171: 105635.
|
30. |
Raju A, Jaisankar P, Borah A, et al. 1-Methyl-4-phenylpyridinium-induced death of differentiated SH-SY5Y neurons is potentiated by cholesterol. Ann Neurosci, 2018, 24(4): 243-251.
|
31. |
Galvagnion C. The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson's disease. J Parkinsons Dis, 2017, 7(3): 433-450.
|
32. |
Wang S, Zhang S, Liou LC, et al. Phosphatidylethanolamine deficiency disrupts α-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc Natl Acad Sci USA, 2014, 111(38): E3976-E3985.
|
33. |
Manyam BV, Ferraro TN, Hare TA. Cerebrospinal fluid amino compounds in Parkinson's disease. Alterations due to carbidopa/levodopa. Arch Neurol, 1988, 45(1): 48-50.
|
34. |
Lattau SSJ, Borsch LM, Auf dem Brinke K, et al. Plasma lipidomic profiling using mass spectrometry for multiple sclerosis diagnosis and disease activity stratification (lipidMS). Int J Mol Sci, 2024, 25(5): 2483.
|
35. |
Cui H, Huang Y, Wu Y, et al. The expression of diacylglycerol kinase isoforms α and ζ correlates with the progression of experimental autoimmune encephalomyelitis in rats. Histochem Cell Biol, 2021, 156(5): 437-448.
|
36. |
Walter S, Gulbins E, Halmer R, et al. Pharmacological inhibition of acid sphingomyelinase ameliorates experimental autoimmune encephalomyelitis. Neurosignals, 2019, 27(S1): 20-31.
|
37. |
Roy P, Tomassoni D, Nittari G, et al. Effects of choline containing phospholipids on the neurovascular unit: a review. Front Cell Neurosci, 2022, 16: 988759.
|
38. |
Sun M, Gong P, Yuan B, et al. AXL-induced autophagy mitigates experimental autoimmune encephalomyelitis by suppressing microglial inflammation via the PI3K/AKT/mTOR signaling pathway. Mol Immunol, 2023, 159: 15-27.
|
39. |
Vaage AM, Benth JŠ, Meyer HE, et al. Premorbid lipid levels and long-term risk of ALS-a population-based cohort study. Amyotroph Lateral Scler Frontotemporal Degener, 2024, 25(3-4): 358-366.
|
40. |
Phan K, He Y, Bhatia S, et al. Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis. Brain Commun, 2022, 5(1): fcac340.
|
41. |
Wagey R, Pelech SL, Duronio V, et al. Phosphatidylinositol 3-kinase: increased activity and protein level in amyotrophic lateral sclerosis. J Neurochem, 1998, 71(2): 716-722.
|
42. |
Wilson C, Venditti R, De Matteis MA. Deregulation of phosphatidylinositol-4-phosphate in the development of amyotrophic lateral sclerosis 8. Adv Biol Regul, 2021, 79: 100779.
|
43. |
Arima H, Omura T, Hayasaka T, et al. Reductions of docosahexaenoic acid-containing phosphatidylcholine levels in the anterior horn of an ALS mouse model. Neuroscience, 2015, 297: 127-136.
|
44. |
Ikeda K, Kinoshita M, Iwasaki Y, et al. Lecithinized superoxide dismutase retards wobbler mouse motoneuron disease. Neuromuscul Disord, 1995, 5(5): 383-390.
|
45. |
Chen S, Wang L, Hu Y, et al. High drug capacity of nano-levodopa-liposomes: preparation, in vitro release and brain-targeted research. Appl Biochem Biotechnol, 2024, 196(6): 3317-3330.
|
46. |
De La Torre AL, Huynh TN, Chang CCY, et al. Stealth liposomes encapsulating a potent ACAT1/SOAT1 inhibitor F12511: pharmacokinetic, biodistribution, and toxicity studies in wild-type mice and efficacy studies in triple transgenic Alzheimer's disease mice. Int J Mol Sci, 2023, 24(13): 11013.
|
47. |
Zhou Y, Zhu F, Liu Y, et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. Sci Adv, 2020, 6(41): eabc7031.
|
48. |
Seo MW, Park TE. Recent advances with liposomes as drug carriers for treatment of neurodegenerative diseases. Biomed Eng Lett, 2021, 11(3): 211-216.
|
49. |
Teixeira MI, Lopes CM, Amaral MH, et al. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm, 2020, 149: 192-217.
|