- 1. Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P. R. China;
- 2. Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P. R. China;
Natural language processing (NLP) is the embodiment of computer intelligence in acquiring knowledge, understanding, processing and expressing consciously and actively. It is the scientific key to promoting the informatization of medical practice and research. This paper reviews the development history and research basis of NLP, and focuses on the current application of NLP and large language models in biomedicine and traditional Chinese medicine (TCM), including the intelligent reading, information extraction and feedback of medical texts and ancient books of TCM, as well as the construction of medical knowledge graph and question-answering system. NLP is the technical support to explore the treasure house of TCM, which is of great practical significance to further promote the development of efficient and high-quality core values of TCM and to improve the service capacity.
Citation: HU Jiayuan, QIU Ruijin, SUN Yang, SHANG Hongcai. Natural language processing and its application in the medical field. Chinese Journal of Evidence-Based Medicine, 2024, 24(10): 1205-1211. doi: 10.7507/1672-2531.202311178 Copy
Copyright © the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
1. | Manaris B. Natural language processing: a human-computer interaction perspective. Advance Comput, 1998, 47(8): 1-66. |
2. | 冯志伟. 自然语言处理的历史与现状. 中国外语, 2008, (1): 14-22. |
3. | 李宇明. 语言学是一个学科群. 语言战略研究, 2018, 3(1): 15-24. |
4. | Booth AD, Brandwood L, Cleave JP. Mechanical resolution of linguistic problems. 1958. |
5. | Searle JR. Minds, brains, and programs. Behav Brain Sci, 1980, 3(3): 417-457. |
6. | 王大鹏. 国内语料库发展现存问题与分析. 渤海大学学报(哲学社会科学版), 2010, 32(3): 137-140. |
7. | 詹卫东, 郭锐, 常宝宝, 等. 北京大学CCL语料库的研制. 语料库语言学, 2019, 6(1): 71-86, 116. |
8. | 北京大学开放研究数据平台. 北京大学计算语言学研究所: 综合型语言知识库(CLKB). |
9. | 柏晓静, 俞士汶, 朱学锋. 自然语言处理中的技术评测及关于英语专业考试的思考. 外语电化教学, 2010, (1): 3-9, 18. |
10. | 李素建, 王厚峰, 俞士汶, 等. 关键词自动标引的最大熵模型应用研究. 计算机学报, 2004, (9): 1192-1197. |
11. | 宗成庆. 统计自然语言处理. 北京: 清华大学出版社, 2013: 8. |
12. | Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc, 2018, 25(10): 1419-1428. |
13. | 郁林音. 译者视角的当代机器翻译发展综述. 现代交际, 2020, (4): 71-73. |
14. | Zhang J, Zong C. Deep neural networks in machine translation: an overview. IEEE Intel Sys, 2015, 30(5): 16-25. |
15. | Wu Y, Schuster M, Chen Z, et al. Google's neural machine translation system: bridging the gap between human and machine translation. ar Xiv preprint ar Xiv, 2016: 1609-8144. |
16. | 中国新闻网. 网易有道入围工信部新一代AI产业创新重点任务揭榜名单. 2020. |
17. | 汪少敏, 杨迪, 任华. 基于深度学习的文本分类系统关键技术研究与模型验证. 电信科学, 2018, 34(12): 117-124. |
18. | Miyazaki K, Ida M. Construction of consistency judgment system of diploma policy and curriculum policy using character‐level CNN. Electro Commun Japan, 2019, 102(12): 1-13. |
19. | Pang BLL. Opinion mining and sentiment analysis. Found Trend Inform Retriev, 2008, 2(1-2): 1-135. |
20. | Hassan A, Mahmood A. Efficient deep learning model for text classification based on recurrent and convolutional layers. 2017. |
21. | Balaneshinkordan S, Kotov A. Bayesian approach to incorporating different types of biomedical knowledge bases into information retrieval systems for clinical decision support in precision medicine. J Biomed Inform, 2019, 98: 103238. |
22. | 吴友政. 构建汉语问答系统评测平台. 2004. |
23. | Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inform Proces Manag, 2015, 51(5): 570-594. |
24. | Moirangthem DS, Lee M. Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network. Neural Netw, 2020, 124: 1-11. |
25. | Shi K, Lu H, Zhu Y, et al. Automatic generation of meteorological briefing by event knowledge guided summarization model. Knowl Bas Sys, 2020, (1): 192. |
26. | Szekely PK. Building and using a knowledge graph to combat human trafficking. Semantic Web-ISWC, 2015, (9367): 205-221. |
27. | He T, Huang W, Qiao Y, et al. Text-Attentional Convolutional Neural Network for Scene Text Detection. IEEE Trans Image Process, 2016, 25(6): 2529-2541. |
28. | 欧阳恩, 李作高, 李昱熙, 等. 基于深度学习的电子病历命名实体识别及其在知识发现中的应用. 中国卫生信息管理杂志, 2018, 15(4): 469-473. |
29. | 易应萍, 张志强, 王强. 基于自然语言处理技术的医学命名实体解析研究. 中国数字医学, 2018, 13(12): 20-22. |
30. | 张顺利, 王应军, 姬东鸿. 基于BLSTM网络的医学时间短语识别. 计算机应用研究, 2019, (1): 1-5. |
31. | 赵君珂, 张振宇, 蔡开裕. 基于自然语言处理的医学实体识别与标签提取. 计算机技术与发展, 2019, 29(9): 18-23. |
32. | Raynaud M, Goutaudier V, Louis K, et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Med Res Methodol, 2021, 21(1): 255. |
33. | Lagunes-García G, Rodríguez-González A, Prieto-Santamaría L, et al. DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ, 2020, 8: e8580. |
34. | Mutinda FW, Liew K, Yada S, et al. Automatic data extraction to support meta-analysis statistical analysis: a case study on breast cancer. BMC Med Inform Decis Mak, 2022, 22(1): 158. |
35. | Zengul FD, Lee T, Delen D, et al. Research themes and trends in ten top-ranked nephrology journals: a text mining analysis. Am J Nephrol, 2020, 51(2): 147-159. |
36. | Valtchinov VI, Lacson R, Wang A, et al. Comparing artificial intelligence approaches to retrieve clinical reports documenting implantable devices posing MRI safety risks. J Am Coll Radiol, 2020, 17(2): 272-279. |
37. | Verma AA, Masoom H, Pou-Prom C, et al. Developing and validating natural language processing algorithms for radiology reports compared to ICD-10 codes for identifying venous thromboembolism in hospitalized medical patients. Thromb Res, 2022, 209: 51-58. |
38. | Shelmerdine SC, Singh M, Norman W, et al. Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol, 2019, 74(9): 733. |
39. | Morandini P, Laino ME, Paoletti G, et al. Artificial intelligence processing electronic health records to identify commonalities and comorbidities cluster at Immuno Center Humanitas. Clin Transl Allergy, 2022, 12(6): e12144. |
40. | Aakre CA. Applying natural language processing neural network architectures to augment appointment request review of self-referred patients to an academic medical center. AMIA Annu Symp Proc, 2022, 2022: 85-91. |
41. | Lee KC, Udelsman BV, Streid J, et al. Natural language processing accurately measures adherence to best practice guidelines for palliative care in Trauma. J Pain Symptom Manage, 2020, 59(2): 225-232. |
42. | Hussain SA, Sezgin E, Krivchenia K, et al. A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA Open, 2021, 4(3): b84. |
43. | Weitzman ER, Magane KM, Chen PH, et al. Online searching and social media to detect alcohol use risk at population scale. Am J Prev Med, 2020, 58(1): 79-88. |
44. | 聂莉莉, 李传富, 许晓倩, 等. 人工智能在医学诊断知识图谱构建中的应用研究. 医学信息学杂志, 2018, 39(6): 7-12. |
45. | 赵雪娇. 妇产科知识图谱构建研究与实现. 中国数字医学, 2019, 14(1): 3-5. |
46. | 张小亮, 王忠民, 王永庆, 等. 基于自然语言处理的临床合理用药知识图谱构建. 中华医学图书情报杂志, 2019, 28(9): 1-5. |
47. | 王琦, 康亮环, 刘国臻. 基于临床知识图谱的慢性肾病辅助决策模型研究. 邮电设计技术, 2018, (12): 68-71. |
48. | 黄梦禧, 张青川, 陈龙, 等. 面向医学领域的智能问答APP设计与实现. 软件导刊, 2019, 18(3): 94-99. |
49. | Demner-Fushman D, Mrabet Y, Ben Abacha A. Consumer health information and question answering: helping consumers find answers to their health-related information needs. J Am Med Inform Assoc, 2020, 27(2): 194-201. |
50. | Legrand J, Gogdemir R, Bousquet C, et al. PGxCorpus, a manually annotated corpus for pharmacogenomics. Sci Data, 2020, 7(1): 3. |
51. | Kang MJ, Dykes PC, Korach TZ, et al. Identifying nurses' concern concepts about patient deterioration using a standard nursing terminology. Int J Med Inform, 2020, 133: 104016. |
52. | 朱明宇. 基于医学人工智能技术的病案首页智能编码研究. 中国数字医学, 2018, 13(4): 34-36. |
53. | Fujimori R, Liu K, Soeno S, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence-based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res, 2022, 6(6): e36501. |
54. | 刘广建, 李晓君, 李庆丰, 等. 临床表型数据和医学知识驱动的儿童脓毒症亚型识别. 中国数字医学, 2019, 14(3): 66-69. |
55. | Le NQK, Yapp EKY, Nagasundaram N, et al. Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext n-grams. Front Bioeng Biotechnol, 2019, 7: 305. |
56. | Bakal G, Talari P, Kakani EV, et al. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J Biomed Inform, 2018, 82: 189-199. |
57. | 尹爱宁, 张汝恩. 建立《中医药一体化语言系统》. 中国中医药信息杂志, 2003, (3): 90-91. |
58. | 于彤, 崔蒙, 李海燕, 等. ISO技术规范“中医药学语言系统语义网络框架”的应用研究. 中国医药导报, 2016, 13(4): 89-92. |
59. | 贾李蓉, 刘丽红, 刘静, 等. 基于中医药学语言系统的知识问答系统的设计与构建. 中华医学图书情报杂志, 2019, 28(5): 11-14. |
60. | Yao L, Jin Z, Mao C, et al. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J Am Med Inform Assoc, 2019, 26(12): 1632-1636. |
61. | Li X, Ren J, Zhang W, et al. LTM-TCM: a comprehensive database for the linking of Traditional Chinese medicine with modern medicine at molecular and phenotypic levels. Pharmacol Res, 2022, 178: 106185. |
62. | 王琼. 中医症状术语自动获取研究. 南京: 江苏科技大学, 2018. |
63. | Sun Y, Zhao Z, Wang Z, et al. Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes. Biomed Res Int, 2022, 2022: 2146236. |
64. | Zhou L, Liu S, Li C, et al. Natural language processing algorithms for normalizing expressions of synonymous symptoms in traditional Chinese medicine. Evid Based Complement Alternat Med, 2021, 2021: 6676607. |
65. | 李焕. 基于深度学习与主动学习的中医术语识别研究. 北京: 北京工业大学, 2019. |
66. | 赵凯, 王华星, 施娜, 等. 基于Neo4j桂枝汤类方知识图谱的研究与实现. 世界中医药, 2019, 14(10): 2636-2639. |
67. | Cheng N, Chen Y, Gao W, et al. An improved deep learning model: s-textblcnn for traditional Chinese medicine formula classification. Front Genet, 2021, 12: 807825. |
68. | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv, 2017. |
69. | Peterson KS, Chapman AB, Widanagamaachchi W, et al. Automating detection of diagnostic error of infectious diseases using machine learning. PLOS Digit Health, 2024, 3(6): e0000528. |
70. | Dagli MM, Oettl FC, Gujral J, et al. Clinical accuracy, relevance, clarity, and emotional sensitivity of large language models to surgical patient questions: cross-sectional study. JMIR Form Res, 2024, 8: e56165. |
71. | Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform, 2023, 25(1): bbad467. |
72. | Singh M, Kumar A, Khanna NN, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, 2024, 73: 102660. |
73. | Ball R, Talal AH, Dang O, et al. Trust but verify: lessons learned for the application of ai to case-based clinical decision-making from postmarketing drug safety assessment at the us food and drug administration. J Med Internet Res, 2024, 26: e50274. |
74. | Mall R, Singh A, Patel CN, et al. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction. Brief Bioinform, 2024, 25(4): bbae270. |
75. | 杨涛, 王欣宇, 朱垚, 等. 大语言模型驱动的中医智能诊疗研究思路与方法. 南京中医药大学学报, 2023, 39(10): 967-971. |
76. | Altamimi I, Alhumimidi A, Alshehri S, et al. The scientific knowledge of three large language models in cardiology: multiple-choice questions examination-based performance. Ann Med Surg (Lond), 2024, 86(6): 3261-3266. |
77. | 许余龙, 刘海涛, 刘正光. 关于语言研究的理论与方法. 外语教学与研究, 2020, 52(1): 3-11. |
78. | Zeroual I, Lakhouaja A. Data science in light of natural language processing: an overview. Proc Comput Sci, 2018, 127: 82-91. |
79. | Trends in natural language processing: ACL 2019 in review. 2019. |
- 1. Manaris B. Natural language processing: a human-computer interaction perspective. Advance Comput, 1998, 47(8): 1-66.
- 2. 冯志伟. 自然语言处理的历史与现状. 中国外语, 2008, (1): 14-22.
- 3. 李宇明. 语言学是一个学科群. 语言战略研究, 2018, 3(1): 15-24.
- 4. Booth AD, Brandwood L, Cleave JP. Mechanical resolution of linguistic problems. 1958.
- 5. Searle JR. Minds, brains, and programs. Behav Brain Sci, 1980, 3(3): 417-457.
- 6. 王大鹏. 国内语料库发展现存问题与分析. 渤海大学学报(哲学社会科学版), 2010, 32(3): 137-140.
- 7. 詹卫东, 郭锐, 常宝宝, 等. 北京大学CCL语料库的研制. 语料库语言学, 2019, 6(1): 71-86, 116.
- 8. 北京大学开放研究数据平台. 北京大学计算语言学研究所: 综合型语言知识库(CLKB).
- 9. 柏晓静, 俞士汶, 朱学锋. 自然语言处理中的技术评测及关于英语专业考试的思考. 外语电化教学, 2010, (1): 3-9, 18.
- 10. 李素建, 王厚峰, 俞士汶, 等. 关键词自动标引的最大熵模型应用研究. 计算机学报, 2004, (9): 1192-1197.
- 11. 宗成庆. 统计自然语言处理. 北京: 清华大学出版社, 2013: 8.
- 12. Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc, 2018, 25(10): 1419-1428.
- 13. 郁林音. 译者视角的当代机器翻译发展综述. 现代交际, 2020, (4): 71-73.
- 14. Zhang J, Zong C. Deep neural networks in machine translation: an overview. IEEE Intel Sys, 2015, 30(5): 16-25.
- 15. Wu Y, Schuster M, Chen Z, et al. Google's neural machine translation system: bridging the gap between human and machine translation. ar Xiv preprint ar Xiv, 2016: 1609-8144.
- 16. 中国新闻网. 网易有道入围工信部新一代AI产业创新重点任务揭榜名单. 2020.
- 17. 汪少敏, 杨迪, 任华. 基于深度学习的文本分类系统关键技术研究与模型验证. 电信科学, 2018, 34(12): 117-124.
- 18. Miyazaki K, Ida M. Construction of consistency judgment system of diploma policy and curriculum policy using character‐level CNN. Electro Commun Japan, 2019, 102(12): 1-13.
- 19. Pang BLL. Opinion mining and sentiment analysis. Found Trend Inform Retriev, 2008, 2(1-2): 1-135.
- 20. Hassan A, Mahmood A. Efficient deep learning model for text classification based on recurrent and convolutional layers. 2017.
- 21. Balaneshinkordan S, Kotov A. Bayesian approach to incorporating different types of biomedical knowledge bases into information retrieval systems for clinical decision support in precision medicine. J Biomed Inform, 2019, 98: 103238.
- 22. 吴友政. 构建汉语问答系统评测平台. 2004.
- 23. Ben Abacha A, Zweigenbaum P. MEANS: a medical question-answering system combining NLP techniques and semantic Web technologies. Inform Proces Manag, 2015, 51(5): 570-594.
- 24. Moirangthem DS, Lee M. Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network. Neural Netw, 2020, 124: 1-11.
- 25. Shi K, Lu H, Zhu Y, et al. Automatic generation of meteorological briefing by event knowledge guided summarization model. Knowl Bas Sys, 2020, (1): 192.
- 26. Szekely PK. Building and using a knowledge graph to combat human trafficking. Semantic Web-ISWC, 2015, (9367): 205-221.
- 27. He T, Huang W, Qiao Y, et al. Text-Attentional Convolutional Neural Network for Scene Text Detection. IEEE Trans Image Process, 2016, 25(6): 2529-2541.
- 28. 欧阳恩, 李作高, 李昱熙, 等. 基于深度学习的电子病历命名实体识别及其在知识发现中的应用. 中国卫生信息管理杂志, 2018, 15(4): 469-473.
- 29. 易应萍, 张志强, 王强. 基于自然语言处理技术的医学命名实体解析研究. 中国数字医学, 2018, 13(12): 20-22.
- 30. 张顺利, 王应军, 姬东鸿. 基于BLSTM网络的医学时间短语识别. 计算机应用研究, 2019, (1): 1-5.
- 31. 赵君珂, 张振宇, 蔡开裕. 基于自然语言处理的医学实体识别与标签提取. 计算机技术与发展, 2019, 29(9): 18-23.
- 32. Raynaud M, Goutaudier V, Louis K, et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Med Res Methodol, 2021, 21(1): 255.
- 33. Lagunes-García G, Rodríguez-González A, Prieto-Santamaría L, et al. DISNET: a framework for extracting phenotypic disease information from public sources. PeerJ, 2020, 8: e8580.
- 34. Mutinda FW, Liew K, Yada S, et al. Automatic data extraction to support meta-analysis statistical analysis: a case study on breast cancer. BMC Med Inform Decis Mak, 2022, 22(1): 158.
- 35. Zengul FD, Lee T, Delen D, et al. Research themes and trends in ten top-ranked nephrology journals: a text mining analysis. Am J Nephrol, 2020, 51(2): 147-159.
- 36. Valtchinov VI, Lacson R, Wang A, et al. Comparing artificial intelligence approaches to retrieve clinical reports documenting implantable devices posing MRI safety risks. J Am Coll Radiol, 2020, 17(2): 272-279.
- 37. Verma AA, Masoom H, Pou-Prom C, et al. Developing and validating natural language processing algorithms for radiology reports compared to ICD-10 codes for identifying venous thromboembolism in hospitalized medical patients. Thromb Res, 2022, 209: 51-58.
- 38. Shelmerdine SC, Singh M, Norman W, et al. Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol, 2019, 74(9): 733.
- 39. Morandini P, Laino ME, Paoletti G, et al. Artificial intelligence processing electronic health records to identify commonalities and comorbidities cluster at Immuno Center Humanitas. Clin Transl Allergy, 2022, 12(6): e12144.
- 40. Aakre CA. Applying natural language processing neural network architectures to augment appointment request review of self-referred patients to an academic medical center. AMIA Annu Symp Proc, 2022, 2022: 85-91.
- 41. Lee KC, Udelsman BV, Streid J, et al. Natural language processing accurately measures adherence to best practice guidelines for palliative care in Trauma. J Pain Symptom Manage, 2020, 59(2): 225-232.
- 42. Hussain SA, Sezgin E, Krivchenia K, et al. A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study. JAMIA Open, 2021, 4(3): b84.
- 43. Weitzman ER, Magane KM, Chen PH, et al. Online searching and social media to detect alcohol use risk at population scale. Am J Prev Med, 2020, 58(1): 79-88.
- 44. 聂莉莉, 李传富, 许晓倩, 等. 人工智能在医学诊断知识图谱构建中的应用研究. 医学信息学杂志, 2018, 39(6): 7-12.
- 45. 赵雪娇. 妇产科知识图谱构建研究与实现. 中国数字医学, 2019, 14(1): 3-5.
- 46. 张小亮, 王忠民, 王永庆, 等. 基于自然语言处理的临床合理用药知识图谱构建. 中华医学图书情报杂志, 2019, 28(9): 1-5.
- 47. 王琦, 康亮环, 刘国臻. 基于临床知识图谱的慢性肾病辅助决策模型研究. 邮电设计技术, 2018, (12): 68-71.
- 48. 黄梦禧, 张青川, 陈龙, 等. 面向医学领域的智能问答APP设计与实现. 软件导刊, 2019, 18(3): 94-99.
- 49. Demner-Fushman D, Mrabet Y, Ben Abacha A. Consumer health information and question answering: helping consumers find answers to their health-related information needs. J Am Med Inform Assoc, 2020, 27(2): 194-201.
- 50. Legrand J, Gogdemir R, Bousquet C, et al. PGxCorpus, a manually annotated corpus for pharmacogenomics. Sci Data, 2020, 7(1): 3.
- 51. Kang MJ, Dykes PC, Korach TZ, et al. Identifying nurses' concern concepts about patient deterioration using a standard nursing terminology. Int J Med Inform, 2020, 133: 104016.
- 52. 朱明宇. 基于医学人工智能技术的病案首页智能编码研究. 中国数字医学, 2018, 13(4): 34-36.
- 53. Fujimori R, Liu K, Soeno S, et al. Acceptance, barriers, and facilitators to implementing artificial intelligence-based decision support systems in emergency departments: quantitative and qualitative evaluation. JMIR Form Res, 2022, 6(6): e36501.
- 54. 刘广建, 李晓君, 李庆丰, 等. 临床表型数据和医学知识驱动的儿童脓毒症亚型识别. 中国数字医学, 2019, 14(3): 66-69.
- 55. Le NQK, Yapp EKY, Nagasundaram N, et al. Classifying promoters by interpreting the hidden information of DNA sequences via deep learning and combination of continuous fasttext n-grams. Front Bioeng Biotechnol, 2019, 7: 305.
- 56. Bakal G, Talari P, Kakani EV, et al. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J Biomed Inform, 2018, 82: 189-199.
- 57. 尹爱宁, 张汝恩. 建立《中医药一体化语言系统》. 中国中医药信息杂志, 2003, (3): 90-91.
- 58. 于彤, 崔蒙, 李海燕, 等. ISO技术规范“中医药学语言系统语义网络框架”的应用研究. 中国医药导报, 2016, 13(4): 89-92.
- 59. 贾李蓉, 刘丽红, 刘静, 等. 基于中医药学语言系统的知识问答系统的设计与构建. 中华医学图书情报杂志, 2019, 28(5): 11-14.
- 60. Yao L, Jin Z, Mao C, et al. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J Am Med Inform Assoc, 2019, 26(12): 1632-1636.
- 61. Li X, Ren J, Zhang W, et al. LTM-TCM: a comprehensive database for the linking of Traditional Chinese medicine with modern medicine at molecular and phenotypic levels. Pharmacol Res, 2022, 178: 106185.
- 62. 王琼. 中医症状术语自动获取研究. 南京: 江苏科技大学, 2018.
- 63. Sun Y, Zhao Z, Wang Z, et al. Leveraging a joint learning model to extract mixture symptom mentions from traditional Chinese medicine clinical notes. Biomed Res Int, 2022, 2022: 2146236.
- 64. Zhou L, Liu S, Li C, et al. Natural language processing algorithms for normalizing expressions of synonymous symptoms in traditional Chinese medicine. Evid Based Complement Alternat Med, 2021, 2021: 6676607.
- 65. 李焕. 基于深度学习与主动学习的中医术语识别研究. 北京: 北京工业大学, 2019.
- 66. 赵凯, 王华星, 施娜, 等. 基于Neo4j桂枝汤类方知识图谱的研究与实现. 世界中医药, 2019, 14(10): 2636-2639.
- 67. Cheng N, Chen Y, Gao W, et al. An improved deep learning model: s-textblcnn for traditional Chinese medicine formula classification. Front Genet, 2021, 12: 807825.
- 68. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv, 2017.
- 69. Peterson KS, Chapman AB, Widanagamaachchi W, et al. Automating detection of diagnostic error of infectious diseases using machine learning. PLOS Digit Health, 2024, 3(6): e0000528.
- 70. Dagli MM, Oettl FC, Gujral J, et al. Clinical accuracy, relevance, clarity, and emotional sensitivity of large language models to surgical patient questions: cross-sectional study. JMIR Form Res, 2024, 8: e56165.
- 71. Zhang Y, Liu C, Liu M, et al. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform, 2023, 25(1): bbad467.
- 72. Singh M, Kumar A, Khanna NN, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine, 2024, 73: 102660.
- 73. Ball R, Talal AH, Dang O, et al. Trust but verify: lessons learned for the application of ai to case-based clinical decision-making from postmarketing drug safety assessment at the us food and drug administration. J Med Internet Res, 2024, 26: e50274.
- 74. Mall R, Singh A, Patel CN, et al. VISH-Pred: an ensemble of fine-tuned ESM models for protein toxicity prediction. Brief Bioinform, 2024, 25(4): bbae270.
- 75. 杨涛, 王欣宇, 朱垚, 等. 大语言模型驱动的中医智能诊疗研究思路与方法. 南京中医药大学学报, 2023, 39(10): 967-971.
- 76. Altamimi I, Alhumimidi A, Alshehri S, et al. The scientific knowledge of three large language models in cardiology: multiple-choice questions examination-based performance. Ann Med Surg (Lond), 2024, 86(6): 3261-3266.
- 77. 许余龙, 刘海涛, 刘正光. 关于语言研究的理论与方法. 外语教学与研究, 2020, 52(1): 3-11.
- 78. Zeroual I, Lakhouaja A. Data science in light of natural language processing: an overview. Proc Comput Sci, 2018, 127: 82-91.
- 79. Trends in natural language processing: ACL 2019 in review. 2019.