• Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou 510317, P. R. China;
LI Guowei, Email: ligw@gd2h.org.cn
Export PDF Favorites Scan Get Citation

Randomized controlled trials (RCTs) are currently the gold standard for the treatment effect comparisons; however, it is sometimes not feasible to conduct an RCT due to ethical and economic reasons. In the absence of evidence for head-to-head RCT direct comparison, the indirect comparison technique is an effective and resource-saving alternative. Matching-adjusted indirect comparison (MAIC) is an attractive method in the field of population-adjusted indirect comparisons between two trials. It can adjust for between-trial imbalances in the distribution of observed covariates by weighting the available individual patient data of the studied intervention and then match the aggregated data of the controlled intervention. Subsequently, the treatment effect comparison can be evaluated through the post-matched population. Although MAIC is gaining increasing attention in clinical research, especially in the evaluation of new drugs, efforts are still largely required for knowledge dissemination in China. In this paper, we briefly introduced the concepts, research value and examples, and pros and cons of MAIC.

Citation: LIU Yingxin, WANG Ruoting, LI Guowei. Introduction of matching-adjusted indirect comparison in medical research. Chinese Journal of Evidence-Based Medicine, 2022, 22(10): 1201-1205. doi: 10.7507/1672-2531.202204127 Copy

Copyright © the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved

  • Previous Article

    Interpretation of guideline for multi-dimensional and multi-criteria evaluation for Chinese patent medicine: establishment of an evaluation model
  • Next Article

    Thinking and exploration for grading real-world evidence