Citation: 程亚楠, 秦浩, 赵卉. 铁稳态及铁死亡与慢性阻塞性肺疾病相关性研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(10): 756-760. doi: 10.7507/1671-6205.202404040 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | You H, Wang D, Wei L, et al. Deferoxamine Inhibits Acute Lymphoblastic Leukemia Progression through Repression of ROS/HIF-1α, Wnt/β-Catenin, and p38MAPK/ERK Pathways. J Oncol, 2022, 2022: 8281267. |
2. | Xie L, Chen W, Chen Q, et al. Synergistic hydroxyl radical formation, system XC- inhibition and heat shock protein crosslinking tango in ferrotherapy: A prove-of-concept study of “sword and shield” theory. Mater Today Bio, 2022, 16: 100353. |
3. | Venkatesan P. GOLD COPD report: 2024 update. Lancet Respir Med, 2024, 12(1): 15-16. |
4. | Wang H, Shi H, Rajan M, et al. FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Mol Cell, 2020, 78(1): 31-41. e5. |
5. | 王莹, 陈亚红. 铁代谢及铁死亡在慢性阻塞性肺疾病中的作用. 生理科学进展, 2022, 53(02): 105-110. |
6. | Lugg S T, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax, 2022, 77(1): 94-101. |
7. | Giorgi G, D’Anna M C, Roque M E. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload. Exp Physiol, 2015, 100(10): 1199-1216. |
8. | Mao H, Zhao Y, Li H, et al. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol, 2020, 155: 20-28. |
9. | Jiang X, Stockwell B R, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. |
10. | Conrad M, Pratt D A. The chemical basis of ferroptosis. Nat Chem Biol, 2019, 15(12): 1137-1147. |
11. | Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017, 13(1): 91-98. |
12. | Zou Y, Palte M J, Deik A A, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun, 2019, 10(1): 1617. |
13. | Ma X H, Liu J H Z, Liu C Y, et al. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther, 2022, 7(1): 288. |
14. | Friedmann Angeli J P, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol, 2014, 16(12): 1180-1191. |
15. | Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 2020, 32(6): 920-937. |
16. | Dai E, Chen X, Linkermann A, et al. A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol, 2024, 26: 1447-1457. |
17. | Zou Y, Li H, Graham E T, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol, 2020, 16(3): 302-309. |
18. | Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784): 688-692. |
19. | Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784): 693-698. |
20. | Elguindy M M, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH: Ubiquinone Oxidoreductases (NDH-2). J Biol Chem, 2015, 290(34): 20815-20826. |
21. | Zhang S, Gou S, Zhang Q, et al. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res, 2023, 33(12): 967-970. |
22. | Lv Y, Liang C, Sun Q, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun, 2023, 14(1): 5933. |
23. | Wang Y, Hu J, Wu S, et al. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Sig Transduct Target Ther, 2023, 8(1): 1-45. |
24. | Kraft V A N, Bezjian C T, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci, 2020, 6(1): 41-53. |
25. | Wang X, Kong X, Feng X, et al. Effects of DNA, RNA, and Protein Methylation on the Regulation of Ferroptosis. Int J Biol Sci, 2023, 19(11): 3558-3575. |
26. | Soula M, Weber R A, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol, 2020, 16(12): 1351-1360. |
27. | Garcia-Bermudez J, Baudrier L, Bayraktar E C, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature, 2019, 567(7746): 118-122. |
28. | Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019, 35(6): 830-849. |
29. | Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun, 2019, 10(1): 3145. |
30. | Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut, 2019, 254(Pt A): 112937. |
31. | Saint-André V, Charbit B, Biton A, et al. Smoking changes adaptive immunity with persistent effects. Nature, 2024, 626(8000): 827-835. |
32. | Chen J, Wang T, Li X, et al. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther, 2024, 9(1): 163. |
33. | Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12(8): 1425-1428. |
34. | Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res, 2016, 26(9): 1021-1032. |
35. | Aghapour M, Remels A H V, Pouwels S D, et al. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1): L149-L164. |
36. | Park E J, Park Y J, Lee S J, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett, 2019, 303: 55-66. |
37. | 吕琳, 程雪, 孙皎琳, 等. 铁死亡与慢性阻塞性肺疾病相关性研究进展. 武汉大学学报(医学版), 2023, 44(10): 1266-1272. |
38. | Saltini C, Mohammad N, Xin Y, et al. Lung microhaemorrhage drives oxidative/inflammatory damage in α1-antitrypsin deficiency. ERJ Open Res, 2023, 9(3): 00662-02022. |
39. | Ghio A J, Soukup J M, Richards J H, et al. Deficiency of α-1-antitrypsin influences systemic iron homeostasis. Int J Chron Obstruct Pulmon Dis, 2013, 8: 45-51. |
40. | Cloonan S M, Glass K, Laucho-Contreras M E, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med, 2016, 22(2): 163-174. |
41. | Xia H, Wu Y, Zhao J, et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ, 2023, 30(5): 1293-1304. |
42. | Zeng Z, Li T, Liu X, et al. DNA dioxygenases TET2 deficiency promotes cigarette smoke induced chronic obstructive pulmonary disease by inducing ferroptosis of lung epithelial cell. Redox Biol, 2023, 67: 102916. |
43. | Wang Y, Xia S. Relationship Between ACSL4-Mediated Ferroptosis and Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis, 2023, 18: 99-111. |
44. | Li X, Duan L, Yuan S, et al. Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm (Lond), 2019, 16: 11. |
45. | Liu L, Zhang Y, Wang L, et al. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res, 2023, 37(10): 4587-4606. |
46. | Wang Y, Liao S, Pan Z, et al. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis. Free Radic Biol Med, 2022, 186: 1-16. |
47. | Xie J, Liu M, Gao Y, et al. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Qibai Pingfei capsule on chronic obstructive pulmonary disease. Front Pharmacol, 2023, 14: 1258138. |
48. | Liu X, Ma Y, Luo L, et al. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway. Phytomedicine, 2022, 96: 153894. |
- 1. You H, Wang D, Wei L, et al. Deferoxamine Inhibits Acute Lymphoblastic Leukemia Progression through Repression of ROS/HIF-1α, Wnt/β-Catenin, and p38MAPK/ERK Pathways. J Oncol, 2022, 2022: 8281267.
- 2. Xie L, Chen W, Chen Q, et al. Synergistic hydroxyl radical formation, system XC- inhibition and heat shock protein crosslinking tango in ferrotherapy: A prove-of-concept study of “sword and shield” theory. Mater Today Bio, 2022, 16: 100353.
- 3. Venkatesan P. GOLD COPD report: 2024 update. Lancet Respir Med, 2024, 12(1): 15-16.
- 4. Wang H, Shi H, Rajan M, et al. FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Mol Cell, 2020, 78(1): 31-41. e5.
- 5. 王莹, 陈亚红. 铁代谢及铁死亡在慢性阻塞性肺疾病中的作用. 生理科学进展, 2022, 53(02): 105-110.
- 6. Lugg S T, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax, 2022, 77(1): 94-101.
- 7. Giorgi G, D’Anna M C, Roque M E. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload. Exp Physiol, 2015, 100(10): 1199-1216.
- 8. Mao H, Zhao Y, Li H, et al. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol, 2020, 155: 20-28.
- 9. Jiang X, Stockwell B R, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
- 10. Conrad M, Pratt D A. The chemical basis of ferroptosis. Nat Chem Biol, 2019, 15(12): 1137-1147.
- 11. Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017, 13(1): 91-98.
- 12. Zou Y, Palte M J, Deik A A, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun, 2019, 10(1): 1617.
- 13. Ma X H, Liu J H Z, Liu C Y, et al. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther, 2022, 7(1): 288.
- 14. Friedmann Angeli J P, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol, 2014, 16(12): 1180-1191.
- 15. Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 2020, 32(6): 920-937.
- 16. Dai E, Chen X, Linkermann A, et al. A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol, 2024, 26: 1447-1457.
- 17. Zou Y, Li H, Graham E T, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol, 2020, 16(3): 302-309.
- 18. Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784): 688-692.
- 19. Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784): 693-698.
- 20. Elguindy M M, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH: Ubiquinone Oxidoreductases (NDH-2). J Biol Chem, 2015, 290(34): 20815-20826.
- 21. Zhang S, Gou S, Zhang Q, et al. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res, 2023, 33(12): 967-970.
- 22. Lv Y, Liang C, Sun Q, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun, 2023, 14(1): 5933.
- 23. Wang Y, Hu J, Wu S, et al. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Sig Transduct Target Ther, 2023, 8(1): 1-45.
- 24. Kraft V A N, Bezjian C T, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci, 2020, 6(1): 41-53.
- 25. Wang X, Kong X, Feng X, et al. Effects of DNA, RNA, and Protein Methylation on the Regulation of Ferroptosis. Int J Biol Sci, 2023, 19(11): 3558-3575.
- 26. Soula M, Weber R A, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol, 2020, 16(12): 1351-1360.
- 27. Garcia-Bermudez J, Baudrier L, Bayraktar E C, et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature, 2019, 567(7746): 118-122.
- 28. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019, 35(6): 830-849.
- 29. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun, 2019, 10(1): 3145.
- 30. Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut, 2019, 254(Pt A): 112937.
- 31. Saint-André V, Charbit B, Biton A, et al. Smoking changes adaptive immunity with persistent effects. Nature, 2024, 626(8000): 827-835.
- 32. Chen J, Wang T, Li X, et al. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther, 2024, 9(1): 163.
- 33. Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12(8): 1425-1428.
- 34. Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res, 2016, 26(9): 1021-1032.
- 35. Aghapour M, Remels A H V, Pouwels S D, et al. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1): L149-L164.
- 36. Park E J, Park Y J, Lee S J, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett, 2019, 303: 55-66.
- 37. 吕琳, 程雪, 孙皎琳, 等. 铁死亡与慢性阻塞性肺疾病相关性研究进展. 武汉大学学报(医学版), 2023, 44(10): 1266-1272.
- 38. Saltini C, Mohammad N, Xin Y, et al. Lung microhaemorrhage drives oxidative/inflammatory damage in α1-antitrypsin deficiency. ERJ Open Res, 2023, 9(3): 00662-02022.
- 39. Ghio A J, Soukup J M, Richards J H, et al. Deficiency of α-1-antitrypsin influences systemic iron homeostasis. Int J Chron Obstruct Pulmon Dis, 2013, 8: 45-51.
- 40. Cloonan S M, Glass K, Laucho-Contreras M E, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med, 2016, 22(2): 163-174.
- 41. Xia H, Wu Y, Zhao J, et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ, 2023, 30(5): 1293-1304.
- 42. Zeng Z, Li T, Liu X, et al. DNA dioxygenases TET2 deficiency promotes cigarette smoke induced chronic obstructive pulmonary disease by inducing ferroptosis of lung epithelial cell. Redox Biol, 2023, 67: 102916.
- 43. Wang Y, Xia S. Relationship Between ACSL4-Mediated Ferroptosis and Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis, 2023, 18: 99-111.
- 44. Li X, Duan L, Yuan S, et al. Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm (Lond), 2019, 16: 11.
- 45. Liu L, Zhang Y, Wang L, et al. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res, 2023, 37(10): 4587-4606.
- 46. Wang Y, Liao S, Pan Z, et al. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis. Free Radic Biol Med, 2022, 186: 1-16.
- 47. Xie J, Liu M, Gao Y, et al. Integration of metabolomics and network pharmacology to reveal the protective mechanism underlying Qibai Pingfei capsule on chronic obstructive pulmonary disease. Front Pharmacol, 2023, 14: 1258138.
- 48. Liu X, Ma Y, Luo L, et al. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway. Phytomedicine, 2022, 96: 153894.
-
Previous Article
特发性肺纤维化中呼吸道病毒的研究进展