1. |
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol, 2016, 16(6): 341-352.
|
2. |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021, 19(1): 55-71.
|
3. |
Marsland BJ, Trompette A, Gollwitzer ES, et al. The gut-lung axis in respiratory disease. Ann Am Thorac Soc, 2015, 12 Suppl 2: S150-S156.
|
4. |
Young RP, Hopkins RJ, Marsland B, et al. The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol, 2016, 54(2): 161-169.
|
5. |
Uzzan M, Corcos O, Martin JC, et al. Why is SARS-CoV-2 infection more severe in obese men? The gut lymphatics - Lung axis hypothesis. Med Hypotheses, 2020, 144: 110023.
|
6. |
Ma Y, Yang X, Chatterjee V, et al. The gut-lung axis in systemic inflammation. Role of mesenteric lymph as a conduit. Am J Respir Cell Mol Biol, 2021, 64(1): 19-28.
|
7. |
2021 GINA Report[EB/OL]. Global Strategy for Asthma Management and Prevention. Available at: https://ginasthma.org/gina-reports/.
|
8. |
Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med, 2020, 26(11): 1766-1775.
|
9. |
Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma. Immunity, 2020, 52(2): 241-255.
|
10. |
Loewen K, Monchka B, Mahmud SM, et al. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J, 2018, 52(1): 1702070.
|
11. |
Loewen K, Monchka B, Mahmud SM, et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies. Lancet Respir Med, 2020, 8(11): 1094-1105.
|
12. |
Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy, 2014, 44(6): 842-850.
|
13. |
Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J Allergy Clin Immunol, 2019, 143(2): 467-485.
|
14. |
van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol, 2011, 128(5): 948-955.e1-3.
|
15. |
Chiu CY, Cheng ML, Chiang MH, et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr Allergy Immunol, 2019, 30(7): 689-697.
|
16. |
Huang YJ, Marsland BJ, Bunyavanich S, et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol, 2017, 139: 1099-1110.
|
17. |
Arrieta MC, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol, 2018, 142: 424-434.
|
18. |
Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med, 2015, 7(307): 307ra152.
|
19. |
Lee-Sarwar KA, Kelly RS, Lasky-Su J, et al. Fecal short-chain fatty acids in pregnancy and offspring asthma and allergic outcomes. J Allergy Clin Immunol Pract, 2020, 8(3): 1100-1102.e13.
|
20. |
Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy, 2019, 74: 799-809.
|
21. |
McLoughlin R, Berthon BS, Rogers GB, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: a 7-day randomised, double blind, three way cross-over trial. EBioMedicine, 2019, 46: 473-485.
|
22. |
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504: 451-455.
|
23. |
Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol, 2018, 11: 785-795.
|
24. |
Stiemsma LT, Arrieta MC, Dimitriu PA, et al. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin Sci (Lond), 2016, 130(23): 2199-2207.
|
25. |
Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun, 2018, 9: 707.
|
26. |
Bernicker EH, Quigley EMM. The gut microbiome influences responses to programmed death 1 therapy in chinese lung cancer patients - the benefits of diversity. J Thorac Oncol, 2019, 14(8): 1319-1322.
|
27. |
Ni Y, Lohinai Z, Heshiki Y, et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J, 2021, 15(11): 3207-3220.
|
28. |
Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol, 2019, 9: 112.
|
29. |
Botticelli A, Vernocchi P, Marini F, et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J Transl Med, 2020, 18(1): 49.
|
30. |
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4): 1030-1042.
|
31. |
Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome, 2020, 8(1): 28.
|
32. |
Yang JJ, Yu D, Xiang YB, et al. Association of dietary fiber and yogurt consumption with lung cancer risk: a pooled analysis. JAMA Oncol, 2020, 6(2): e194107.
|
33. |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084.
|
34. |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371): 91-97.
|
35. |
Tomita Y, Ikeda T, Sakata S, et al. Association of probiotic clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res, 2020, 8(10): 1236-1242.
|
36. |
Hakozaki T, Okuma Y, Omori M, et al. Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol Lett, 2019, 17(3): 2946-2952.
|
37. |
Ni Y, Lohinai Z, Heshiki Y, et al. Analysis of the gut microbiota: an emerging source of biomarkers for immune checkpoint blockade therapy in non-small cell lung cancer. Cancers, 2021, 13(11): 2514.
|
38. |
Hakozaki T, Richard C, Elkrief A, et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol Res, 2020, 8(10): 1243-1250.
|
39. |
Katayama Y, Yamada T, Shimamoto T, et al. The role of the gut microbiome on the efficacy of immune checkpoint inhibitors in Japanese responder patients with advanced non-small cell lung cancer. Transl Lung Cancer Res, 2019, 8(6): 847-853.
|
40. |
Vernocchi P, Gili T, Conte F, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int J Mol Sci, 2020, 21(22): 8730.
|
41. |
Hurst JR, Sin DD. Chronic obstructive pulmonary disease as a risk factor for cardiovascular disease. A view from the SUMMIT. Am J Respir Crit Care Med, 2018, 198(1): 2-4.
|
42. |
Rutten EPA, Lenaerts K, Buurman WA, et al. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest, 2014, 145(2): 245-252.
|
43. |
Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China, a large, population-based survey. Am J Respir Crit Care Med, 2007, 176(8): 753-760.
|
44. |
Wang C, Xu J, Yang L, et al. China pulmonary health study group. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet, 2018, 391(10131): 1706-1717.
|
45. |
Zhou Y, Zhong NS, Li X, et al. Tiotropium in early-stage chronic obstructive pulmonary disease. N Engl J Med, 2017, 377(10): 923-935.
|
46. |
Li C, Zhou Y, Liu S, et al. Tiotropium discontinuation in patients with early-stage COPD: a prospective observational cohort study. ERJ Open Res, 2019, 5(1): 00175-2018.
|
47. |
Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun, 2020, 11(1): 5886.
|
48. |
Lai HC, Lin TL, Chen TW, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut, 2022, 71(2): 309-321.
|
49. |
Li N, Yang Z, Liao B, et al. Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model. Respir Res, 2020, 21(1): 271.
|
50. |
Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res, 2021, 22(1): 274.
|
51. |
李乃健, 戴周丽, 陈炽勇, 等. 通过粪菌移植建立慢性阻塞性肺疾病肠道菌群研究模型及其效果评价. 中国呼吸与危重监护杂志, 2021, 20(7): 465-471.
|
52. |
Varraso R, Chiuve SE, Fung TT, et al. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. BMJ, 2015, 350: h286.
|
53. |
Tomoda K, Kubo K, Dairiki K, et al. Whey peptide-based enteral diet attenuated elastase-induced emphysema with increase in short chain fatty acids in mice. BMC Pulm Med, 2015, 15: 64.
|
54. |
Ottiger M, Nickler M, Steuer C, et al. Gut, microbiota-dependent trimethylamine-N-oxide is associated with long-term all-cause mortality in patients with exacerbated chronic obstructive pulmonary disease. Nutrition, 2018, 45: 135-141.e1.
|
55. |
Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159(3): 944-955.e8.
|
56. |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8.
|
57. |
Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487(7408): 477-481.
|
58. |
Wang J, Zhao S, Liu M, et al. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism[EB/OL]. medRxiv, 2020, 2020(02.05.20020545).
|
59. |
Luthra-Guptasarma M, Guptasarma P. Inflammation begets hyper-inflammation in Covid-19: diet-derived chronic inflammation promotes runaway acute inflammation resulting in cytokine storms. Res Gate, 2020, 10.13140/RG.2.2.17723.44323.
|
60. |
Han C, Duan C, Zhang S, et al. Digestive symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol, 2020, 115(6): 916-923.
|
61. |
Yeoh KY, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 2021, 70: 698-706.
|
62. |
Alberca GGF, Solis-Castro RL, Solis-Castro ME, et al. Coronavirus disease-2019 and the intestinal tract: An overview. World J Gastroenterol, 2021, 27(13): 1255-1266.
|
63. |
中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案[试行第八版]. 中华临床感染病杂志, 2020, 13(5): 321-328.
|