Citation: 刘琼, 王金荣, 崔朝勃. 氢化可的松、维生素 C 和维生素 B1 联合治疗脓毒症研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2021, 20(5): 366-371. doi: 10.7507/1671-6205.201812008 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Fleischmann C, Scherag A, Adhikari N, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med, 2016, 193(3): 259-272. |
2. | Karlsson S, Ruokonen E, Varpula T, et al. Long-term outcome and quality-adjusted life years after severe sepsis. Crit Care Med, 2009, 37(4): 1268-1274. |
3. | Yende S, Austin S, Rhodes A, et al. Long-term quality of life among survivors of severe sepsis: analyses of two international trials. Crit Care Med, 2016, 44(8): 1461-1467. |
4. | Ou SM, Chu H, Chao PW, et al. Long-term mortality and major adverse cardiovascular events in sepsis survivors. A nationwide population-based study. Am J Respir Crit Care Med, 2016, 194(2): 209-217. |
5. | Prescott HC, Langa KM, Liu V, et al. Increased 1-year healthcare use in survivors of severe sepsis. Am J Respir Crit Care Med, 2014, 190(1): 62-69. |
6. | Liu V, Lei X, Prescott HC, et al. Hospital readmission and healthcare utilization following sepsis in community settings. J Hosp Med, 2014, 9(8): 502-507. |
7. | Shah FA, Pike F, Alvarez K, et al. Bidirectional relationship between cognitive function and pneumonia. Am J Respir Crit Care Med, 2013, 188(5): 586-592. |
8. | Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA, 2018, 319(1): 62-75. |
9. | Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med, 2001, 345(8): 588-595. |
10. | Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med, 2010, 363(7): 689-691. |
11. | May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal, 2013, 19(17): 2068-2083. |
12. | Prauchner CA. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns, 2017, 43(3): 471-485. |
13. | Artenstein AW, Higgins TL, Opal SM. Sepsis and scientific revolutions. Crit Care Med, 2013, 41(12): 2770-2772. |
14. | Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood, 2003, 101(10): 3765-3777. |
15. | Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest, 2017, 151(6): 1229-1238. |
16. | Galon J, Franchimont D, Hiroi N, et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J, 2002, 16(1): 61-71. |
17. | Keh D, Boehnke T, Weber-Cartens S, et al. Immunologic and hemodynamic effects of "low-dose" hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med, 2003, 167(4): 512-520. |
18. | Rygård SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med, 2018, 44(7): 1003-1016. |
19. | Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med, 2013, 41(5): 1167-1174. |
20. | Kaukonen KM, Bailey M, Suzuki S, et al. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA, 2014, 311(13): 1308-1316. |
21. | Minneci PC, Deans KJ, Eichacker PQ, et al. The effects of steroids during sepsis depend on dose and severity of illness: an updated meta-analysis. Clin Microbiol Infect, 2009, 15(4): 308-318. |
22. | Volbeda M, Wetterslev J, Gluud C, et al. Glucocorticosteroids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med, 2015, 41(7): 1220-1234. |
23. | Kalil AC, Sun J. Low-dose steroids for septic shock and severe sepsis: the use of Bayesian statistics to resolve clinical trial controversies. Intensive Care Med, 2011, 37(3): 420-429. |
24. | Lv QQ, Gu XH, Chen QH, et al. Early initiation of low-dose hydrocortisone treatment for septic shock in adults: a randomized clinical trial. Am J Emerg Med, 2017, 35(12): 1810-1814. |
25. | Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med, 2018, 378(9): 797-808. |
26. | Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med, 2018, 378(9): 809-818. |
27. | Hyvernat H, Barel R, Gentilhomme A, et al. Effects of increasing hydrocortisone to 300?mg Per day in the treatment of septic shock: a pilot study. Shock, 2016, 46(5): 498-505. |
28. | Nazer L, AlNajjar T, Al-Shaer M, et al. Evaluating the effectiveness and safety of hydrocortisone therapy in cancer patients with septic shock. J Oncol Pharm Pract, 2015, 21(4): 274-279. |
29. | Keh D, Trips E, Marx G, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: The HYPRESS Randomized Clinical Trial. JAMA, 2016, 316(17): 1775-1785. |
30. | Galley HF, Davies MJ, Webster NR. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic Biol Med, 1996, 20(1): 139-143. |
31. | Borrelli E, Roux-Lombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med, 1996, 24(3): 392-397. |
32. | Evans-Olders R, Eintracht S, Hoffer LJ. Metabolic origin of hypovitaminosis C in acutely hospitalized patients. Nutrition, 2010, 26(11-12): 1070-1074. |
33. | Rojas C, Cadenas S, Herrero A, et al. Endotoxin depletes ascorbate in the guinea pig heart. Protective effects of vitamins C and E against oxidative stress. Life Sci, 1996, 59(8): 649-657. |
34. | Armour J, Tyml K, Lidington D, et al. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol (1985), 2001, 90(3): 795-803. |
35. | Victor VM, Guayerbas N, Puerto M, et al. Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Radic Res, 2001, 35(6): 907-916. |
36. | Wu F, Wilson JX, Tyml K. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol, 2003, 285(1): R50-6. |
37. | Tyml K, Li F, Wilson JX. Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in septic rat skeletal muscle. Crit Care Med, 2005, 33(8): 1823-1828. |
38. | Fowler AA 3rd, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med, 2014, 12: 32. |
39. | Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care, 2017, 21(1): 300. |
40. | de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: A Randomized Trial of Four IV Regimens. Chest, 2018, 153(6): 1368-1377. |
41. | Wilson JX. Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid Redox Signal, 2013, 19(17): 2129-2140. |
42. | Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care, 2014, 18(4): 460. |
43. | Marik PE. Hydrocortisone, ascorbic acid and thiamine (HAT Therapy) for the treatment of sepsis. Focus on ascorbic acid. Nutrients, 2018, 10(11): 1762. |
44. | Seo MY, Lee SM. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol, 2002, 36(1): 72-77. |
45. | Manzella JP, Roberts NJ Jr. Human macrophage and lymphocyte responses to mitogen stimulation after exposure to influenza virus, ascorbic acid, and hyperthermia. J Immunol, 1979, 123(5): 1940-1944. |
46. | Siegel BV. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid. Nature, 1975, 254(5500): 531-532. |
47. | Motl J, Radhakrishnan J, Ayoub IM, et al. Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation. Am J Ther, 2014, 21(5): 352-357. |
48. | Kuck JL, Bastarache JA, Shaver CM, et al. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem Biophys Res Commun, 2018, 495(1): 433-437. |
49. | Spoelstra-de Man AME, Elbers PWG, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit Care, 2018, 22(1): 70. |
50. | Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A, 2007, 104(21): 8749-8754. |
51. | Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A, 2005, 102(38): 13604-13609. |
52. | Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A, 2008, 105(32): 11105-11109. |
53. | Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr, 2011, 2(2): 78-88. |
54. | Mühlhöfer A, Mrosek S, Schlegel B, et al. High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr, 2004, 58(8): 1151-1158. |
55. | Wang ZJ, Hu WK, Liu YY, et al. The effect of intravenous vitamin C infusion on periprocedural myocardial injury for patients undergoing elective percutaneous coronary intervention. Can J Cardiol, 2014, 30(1): 96-101. |
56. | Hu X, Yuan L, Wang H, et al. Efficacy and safety of vitamin C for atrial fibrillation after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. Int J Surg, 2017, 37: 58-64. |
57. | Xu Y, Zheng X, Liang B, et al. Vitamins for prevention of contrast-induced acute kidney injury: a systematic review and trial sequential analysis. Am J Cardiovasc Drugs, 2018, 18(5): 373-386. |
58. | Scholz SS, Borgstedt R, Ebeling N, et al. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. Crit Care, 2021, 25(1): 17. |
59. | Collie JTB, Greaves RF, Jones OAH, et al. Vitamin B1 in critically ill patients: needs and challenges. Clin Chem Lab Med, 2017, 55(11): 1652-1668. |
60. | Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry, 2014, 53(5): 821-835. |
61. | van Snippenburg W, Reijnders MGJ, Hofhuis JGM, et al. Thiamine levels during intensive insulin therapy in critically ill patients. J Intensive Care Med, 2017, 32(9): 559-564. |
62. | Donnino MW, Andersen LW, Chase M, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med, 2016, 44(2): 360-367. |
63. | Donnino MW, Carney E, Cocchi MN, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care, 2010, 25(4): 576-581. |
64. | Hazell AS, Faim S, Wertheimer G, et al. The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int, 2013, 62(5): 796-802. |
65. | Gioda CR, de Oliveira Barreto T, Prímola-Gomes TN, et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol, 2010, 298(6): H2039-H2045. |
66. | Gibson GE, Zhang H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int, 2002, 40(6): 493-504. |
67. | Moskowitz A, Andersen LW, Cocchi MN, et al. Thiamine as a renal protective agent in septic shock. A secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc, 2017, 14(5): 737-741. |
68. | Woolum JA, Abner EL, Kelly A, et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med, 2018, 46(11): 1747-1752. |
69. | Barabutis N, Khangoora V, Marik PE, et al. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest, 2017, 152(5): 954-962. |
70. | Azari O, Kheirandish R, Azizi S, et al. Protective effects of hydrocortisone, vitamin C and E alone or in combination against renal ischemia-reperfusion injury in rat. Iran J Pathol, 2015, 10(4): 272-280. |
71. | Sadaka F, Grady J, Organti N, et al. Ascorbic acid, thiamine, and steroids in septic shock: propensity matched analysis. J Intensive Care Med, 2020, 35(11): 1302-1306. |
72. | Kim WY, Jo EJ, Eom JS, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-based analysis of a before-after cohort study. J Crit Care, 2018, 47: 211-218. |
73. | Coloretti I, Biagioni E, Venturelli S, et al. Adjunctive therapy with vitamin C and thiamine in patients treated with steroids for refractory septic shock: A propensity matched before-after, case-control study. J Crit Care, 2020, 59: 37-41. |
74. | Kim J, Arnaout L, Remick D. Hydrocortisone, ascorbic acid, and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function, and improves survival in murine sepsis. Shock, 2020, 53(4): 460-467. |
75. | Kim WY, Jung JW, Choi JC, et al. Subphenotypes in patients with septic shock receiving vitamin C, hydrocortisone, and thiamine: a retrospective cohort analysis. Nutrients, 2019, 11(12): 2976. |
76. | Fujii T, Luethi N, Young PJ, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS Randomized Clinical Trial. JAMA, 2020, 323(5): 423-431. |
77. | Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C Infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI Randomized Clinical Trial. JAMA, 2019, 322(13): 1261-1270. |
78. | Iglesias J, Vassallo AV, Patel VV, et al. Outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis: The ORANGES Trial. Chest, 2020, 158(1): 164-173. |
79. | Chang P, Liao Y, Guan J, et al. Combined treatment with hydrocortisone, vitamin C, and thiamine for sepsis and septic shock: a randomized controlled trial. Chest, 2020, 158(1): 174-182. |
80. | Wani SJ, Mufti SA, Jan RA, et al. Combination of vitamin C, thiamine and hydrocortisone added to standard treatment in the management of sepsis: results from an open label randomised controlled clinical trial and a review of the literature. Infect Dis (Lond), 2020, 52(4): 271-278. |
81. | Sevransky JE, Rothman RE, Hager DN, et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis: The VICTAS Randomized Clinical Trial. JAMA, 2021, 325(8): 742-750. |
82. | Vail EA, Wunsch H, Pinto R, et al. Use of hydrocortisone, ascorbic acid, and thiamine in adults with septic shock. Am J Respir Crit Care Med, 2020, 202(11): 1531-1539. |
83. | Moskowitz A, Huang DT, Hou PC, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: The ACTS Randomized Clinical Trial. JAMA, 2020, 324(7): 642-650. |
84. | Reddy PR, Samavedam S, Aluru N, et al. Metabolic resuscitation using hydrocortisone, ascorbic acid, and thiamine: do individual components influence reversal of shock independently?. Indian J Crit Care Med, 2020, 24(8): 649-652. |
85. | Mohamed ZU, Prasannan P, Moni M, et al. Vitamin C therapy for routine care in septic shock (victor) trial: effect of intravenous vitamin C, thiamine, and hydrocortisone administration on inpatient mortality among patients with septic shock. Indian J Crit Care Med, 2020, 24(8): 653-661. |
86. | Grossestreuer AV, Moskowitz A, Andersen LW, et al. Effect of ascorbic acid, corticosteroids, and thiamine on health-related quality of life in sepsis. Crit Care Explor, 2020, 2(12): e0270. |
87. | Iglesias J, Vassallo AV, Liesenfeld O, et al. A 33-mRNA classifier is able to produce inflammopathic, adaptive, and coagulopathic endotypes with prognostic significance: the outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis (ORANGES) trial. J Pers Med, 2020, 11(1): 9. |
88. | Zayed Y, Alzghoul BN, Banifadel M, et al. Vitamin C, thiamine, and hydrocortisone in the treatment of sepsis: a meta-analysis and trial sequential analysis of randomized controlled trials. J Intensive Care Med, 2021, 29: 885066620987809. |
- 1. Fleischmann C, Scherag A, Adhikari N, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med, 2016, 193(3): 259-272.
- 2. Karlsson S, Ruokonen E, Varpula T, et al. Long-term outcome and quality-adjusted life years after severe sepsis. Crit Care Med, 2009, 37(4): 1268-1274.
- 3. Yende S, Austin S, Rhodes A, et al. Long-term quality of life among survivors of severe sepsis: analyses of two international trials. Crit Care Med, 2016, 44(8): 1461-1467.
- 4. Ou SM, Chu H, Chao PW, et al. Long-term mortality and major adverse cardiovascular events in sepsis survivors. A nationwide population-based study. Am J Respir Crit Care Med, 2016, 194(2): 209-217.
- 5. Prescott HC, Langa KM, Liu V, et al. Increased 1-year healthcare use in survivors of severe sepsis. Am J Respir Crit Care Med, 2014, 190(1): 62-69.
- 6. Liu V, Lei X, Prescott HC, et al. Hospital readmission and healthcare utilization following sepsis in community settings. J Hosp Med, 2014, 9(8): 502-507.
- 7. Shah FA, Pike F, Alvarez K, et al. Bidirectional relationship between cognitive function and pneumonia. Am J Respir Crit Care Med, 2013, 188(5): 586-592.
- 8. Prescott HC, Angus DC. Enhancing recovery from sepsis: a review. JAMA, 2018, 319(1): 62-75.
- 9. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med, 2001, 345(8): 588-595.
- 10. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med, 2010, 363(7): 689-691.
- 11. May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal, 2013, 19(17): 2068-2083.
- 12. Prauchner CA. Oxidative stress in sepsis: Pathophysiological implications justifying antioxidant co-therapy. Burns, 2017, 43(3): 471-485.
- 13. Artenstein AW, Higgins TL, Opal SM. Sepsis and scientific revolutions. Crit Care Med, 2013, 41(12): 2770-2772.
- 14. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood, 2003, 101(10): 3765-3777.
- 15. Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest, 2017, 151(6): 1229-1238.
- 16. Galon J, Franchimont D, Hiroi N, et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J, 2002, 16(1): 61-71.
- 17. Keh D, Boehnke T, Weber-Cartens S, et al. Immunologic and hemodynamic effects of "low-dose" hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med, 2003, 167(4): 512-520.
- 18. Rygård SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med, 2018, 44(7): 1003-1016.
- 19. Gaieski DF, Edwards JM, Kallan MJ, et al. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med, 2013, 41(5): 1167-1174.
- 20. Kaukonen KM, Bailey M, Suzuki S, et al. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA, 2014, 311(13): 1308-1316.
- 21. Minneci PC, Deans KJ, Eichacker PQ, et al. The effects of steroids during sepsis depend on dose and severity of illness: an updated meta-analysis. Clin Microbiol Infect, 2009, 15(4): 308-318.
- 22. Volbeda M, Wetterslev J, Gluud C, et al. Glucocorticosteroids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intensive Care Med, 2015, 41(7): 1220-1234.
- 23. Kalil AC, Sun J. Low-dose steroids for septic shock and severe sepsis: the use of Bayesian statistics to resolve clinical trial controversies. Intensive Care Med, 2011, 37(3): 420-429.
- 24. Lv QQ, Gu XH, Chen QH, et al. Early initiation of low-dose hydrocortisone treatment for septic shock in adults: a randomized clinical trial. Am J Emerg Med, 2017, 35(12): 1810-1814.
- 25. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med, 2018, 378(9): 797-808.
- 26. Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med, 2018, 378(9): 809-818.
- 27. Hyvernat H, Barel R, Gentilhomme A, et al. Effects of increasing hydrocortisone to 300?mg Per day in the treatment of septic shock: a pilot study. Shock, 2016, 46(5): 498-505.
- 28. Nazer L, AlNajjar T, Al-Shaer M, et al. Evaluating the effectiveness and safety of hydrocortisone therapy in cancer patients with septic shock. J Oncol Pharm Pract, 2015, 21(4): 274-279.
- 29. Keh D, Trips E, Marx G, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: The HYPRESS Randomized Clinical Trial. JAMA, 2016, 316(17): 1775-1785.
- 30. Galley HF, Davies MJ, Webster NR. Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic Biol Med, 1996, 20(1): 139-143.
- 31. Borrelli E, Roux-Lombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med, 1996, 24(3): 392-397.
- 32. Evans-Olders R, Eintracht S, Hoffer LJ. Metabolic origin of hypovitaminosis C in acutely hospitalized patients. Nutrition, 2010, 26(11-12): 1070-1074.
- 33. Rojas C, Cadenas S, Herrero A, et al. Endotoxin depletes ascorbate in the guinea pig heart. Protective effects of vitamins C and E against oxidative stress. Life Sci, 1996, 59(8): 649-657.
- 34. Armour J, Tyml K, Lidington D, et al. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J Appl Physiol (1985), 2001, 90(3): 795-803.
- 35. Victor VM, Guayerbas N, Puerto M, et al. Changes in the ascorbic acid levels of peritoneal lymphocytes and macrophages of mice with endotoxin-induced oxidative stress. Free Radic Res, 2001, 35(6): 907-916.
- 36. Wu F, Wilson JX, Tyml K. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol, 2003, 285(1): R50-6.
- 37. Tyml K, Li F, Wilson JX. Delayed ascorbate bolus protects against maldistribution of microvascular blood flow in septic rat skeletal muscle. Crit Care Med, 2005, 33(8): 1823-1828.
- 38. Fowler AA 3rd, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med, 2014, 12: 32.
- 39. Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care, 2017, 21(1): 300.
- 40. de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: A Randomized Trial of Four IV Regimens. Chest, 2018, 153(6): 1368-1377.
- 41. Wilson JX. Evaluation of vitamin C for adjuvant sepsis therapy. Antioxid Redox Signal, 2013, 19(17): 2129-2140.
- 42. Oudemans-van Straaten HM, Spoelstra-de Man AM, de Waard MC. Vitamin C revisited. Crit Care, 2014, 18(4): 460.
- 43. Marik PE. Hydrocortisone, ascorbic acid and thiamine (HAT Therapy) for the treatment of sepsis. Focus on ascorbic acid. Nutrients, 2018, 10(11): 1762.
- 44. Seo MY, Lee SM. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J Hepatol, 2002, 36(1): 72-77.
- 45. Manzella JP, Roberts NJ Jr. Human macrophage and lymphocyte responses to mitogen stimulation after exposure to influenza virus, ascorbic acid, and hyperthermia. J Immunol, 1979, 123(5): 1940-1944.
- 46. Siegel BV. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid. Nature, 1975, 254(5500): 531-532.
- 47. Motl J, Radhakrishnan J, Ayoub IM, et al. Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation. Am J Ther, 2014, 21(5): 352-357.
- 48. Kuck JL, Bastarache JA, Shaver CM, et al. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin. Biochem Biophys Res Commun, 2018, 495(1): 433-437.
- 49. Spoelstra-de Man AME, Elbers PWG, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit Care, 2018, 22(1): 70.
- 50. Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A, 2007, 104(21): 8749-8754.
- 51. Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A, 2005, 102(38): 13604-13609.
- 52. Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci U S A, 2008, 105(32): 11105-11109.
- 53. Levine M, Padayatty SJ, Espey MG. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr, 2011, 2(2): 78-88.
- 54. Mühlhöfer A, Mrosek S, Schlegel B, et al. High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr, 2004, 58(8): 1151-1158.
- 55. Wang ZJ, Hu WK, Liu YY, et al. The effect of intravenous vitamin C infusion on periprocedural myocardial injury for patients undergoing elective percutaneous coronary intervention. Can J Cardiol, 2014, 30(1): 96-101.
- 56. Hu X, Yuan L, Wang H, et al. Efficacy and safety of vitamin C for atrial fibrillation after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. Int J Surg, 2017, 37: 58-64.
- 57. Xu Y, Zheng X, Liang B, et al. Vitamins for prevention of contrast-induced acute kidney injury: a systematic review and trial sequential analysis. Am J Cardiovasc Drugs, 2018, 18(5): 373-386.
- 58. Scholz SS, Borgstedt R, Ebeling N, et al. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. Crit Care, 2021, 25(1): 17.
- 59. Collie JTB, Greaves RF, Jones OAH, et al. Vitamin B1 in critically ill patients: needs and challenges. Clin Chem Lab Med, 2017, 55(11): 1652-1668.
- 60. Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry, 2014, 53(5): 821-835.
- 61. van Snippenburg W, Reijnders MGJ, Hofhuis JGM, et al. Thiamine levels during intensive insulin therapy in critically ill patients. J Intensive Care Med, 2017, 32(9): 559-564.
- 62. Donnino MW, Andersen LW, Chase M, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med, 2016, 44(2): 360-367.
- 63. Donnino MW, Carney E, Cocchi MN, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care, 2010, 25(4): 576-581.
- 64. Hazell AS, Faim S, Wertheimer G, et al. The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int, 2013, 62(5): 796-802.
- 65. Gioda CR, de Oliveira Barreto T, Prímola-Gomes TN, et al. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol, 2010, 298(6): H2039-H2045.
- 66. Gibson GE, Zhang H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int, 2002, 40(6): 493-504.
- 67. Moskowitz A, Andersen LW, Cocchi MN, et al. Thiamine as a renal protective agent in septic shock. A secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc, 2017, 14(5): 737-741.
- 68. Woolum JA, Abner EL, Kelly A, et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med, 2018, 46(11): 1747-1752.
- 69. Barabutis N, Khangoora V, Marik PE, et al. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest, 2017, 152(5): 954-962.
- 70. Azari O, Kheirandish R, Azizi S, et al. Protective effects of hydrocortisone, vitamin C and E alone or in combination against renal ischemia-reperfusion injury in rat. Iran J Pathol, 2015, 10(4): 272-280.
- 71. Sadaka F, Grady J, Organti N, et al. Ascorbic acid, thiamine, and steroids in septic shock: propensity matched analysis. J Intensive Care Med, 2020, 35(11): 1302-1306.
- 72. Kim WY, Jo EJ, Eom JS, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: propensity score-based analysis of a before-after cohort study. J Crit Care, 2018, 47: 211-218.
- 73. Coloretti I, Biagioni E, Venturelli S, et al. Adjunctive therapy with vitamin C and thiamine in patients treated with steroids for refractory septic shock: A propensity matched before-after, case-control study. J Crit Care, 2020, 59: 37-41.
- 74. Kim J, Arnaout L, Remick D. Hydrocortisone, ascorbic acid, and thiamine (HAT) therapy decreases oxidative stress, improves cardiovascular function, and improves survival in murine sepsis. Shock, 2020, 53(4): 460-467.
- 75. Kim WY, Jung JW, Choi JC, et al. Subphenotypes in patients with septic shock receiving vitamin C, hydrocortisone, and thiamine: a retrospective cohort analysis. Nutrients, 2019, 11(12): 2976.
- 76. Fujii T, Luethi N, Young PJ, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS Randomized Clinical Trial. JAMA, 2020, 323(5): 423-431.
- 77. Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C Infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI Randomized Clinical Trial. JAMA, 2019, 322(13): 1261-1270.
- 78. Iglesias J, Vassallo AV, Patel VV, et al. Outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis: The ORANGES Trial. Chest, 2020, 158(1): 164-173.
- 79. Chang P, Liao Y, Guan J, et al. Combined treatment with hydrocortisone, vitamin C, and thiamine for sepsis and septic shock: a randomized controlled trial. Chest, 2020, 158(1): 174-182.
- 80. Wani SJ, Mufti SA, Jan RA, et al. Combination of vitamin C, thiamine and hydrocortisone added to standard treatment in the management of sepsis: results from an open label randomised controlled clinical trial and a review of the literature. Infect Dis (Lond), 2020, 52(4): 271-278.
- 81. Sevransky JE, Rothman RE, Hager DN, et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis: The VICTAS Randomized Clinical Trial. JAMA, 2021, 325(8): 742-750.
- 82. Vail EA, Wunsch H, Pinto R, et al. Use of hydrocortisone, ascorbic acid, and thiamine in adults with septic shock. Am J Respir Crit Care Med, 2020, 202(11): 1531-1539.
- 83. Moskowitz A, Huang DT, Hou PC, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: The ACTS Randomized Clinical Trial. JAMA, 2020, 324(7): 642-650.
- 84. Reddy PR, Samavedam S, Aluru N, et al. Metabolic resuscitation using hydrocortisone, ascorbic acid, and thiamine: do individual components influence reversal of shock independently?. Indian J Crit Care Med, 2020, 24(8): 649-652.
- 85. Mohamed ZU, Prasannan P, Moni M, et al. Vitamin C therapy for routine care in septic shock (victor) trial: effect of intravenous vitamin C, thiamine, and hydrocortisone administration on inpatient mortality among patients with septic shock. Indian J Crit Care Med, 2020, 24(8): 653-661.
- 86. Grossestreuer AV, Moskowitz A, Andersen LW, et al. Effect of ascorbic acid, corticosteroids, and thiamine on health-related quality of life in sepsis. Crit Care Explor, 2020, 2(12): e0270.
- 87. Iglesias J, Vassallo AV, Liesenfeld O, et al. A 33-mRNA classifier is able to produce inflammopathic, adaptive, and coagulopathic endotypes with prognostic significance: the outcomes of metabolic resuscitation using ascorbic acid, thiamine, and glucocorticoids in the early treatment of sepsis (ORANGES) trial. J Pers Med, 2020, 11(1): 9.
- 88. Zayed Y, Alzghoul BN, Banifadel M, et al. Vitamin C, thiamine, and hydrocortisone in the treatment of sepsis: a meta-analysis and trial sequential analysis of randomized controlled trials. J Intensive Care Med, 2021, 29: 885066620987809.
-
Previous Article
慢性阻塞性肺疾病患者多重用药现况及管理策略 -
Next Article
细胞外囊泡在急性呼吸窘迫综合征中的研究进展