Citation: 汪倩, 韩锋锋. 急性加重型慢性阻塞性肺疾病外周血生物标志物研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2021, 20(2): 143-147. doi: 10.7507/1671-6205.201811040 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Regan EA, Hersh CP, Castaldi PJ, et al. Omics and the search for blood biomarkers in chronic obstructive pulmonary disease. Insights from COPDGene. Am J Respir Cell Mol Biol, 2019, 61(2): 143-149. |
2. | Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight, 2018, 3(22): e123614. |
3. | Chaudhuri R, McSharry C, Spears M, et al. Sputum matrix metalloproteinase-9 is associated with the degree of emphysema on computed tomography in COPD. Transl Respir Med, 2013, 1(1): 11. |
4. | Servillo L, Giovane A, Cautela D, et al. The methylarginines NMMA, ADMA, and SDMA are ubiquitous constituents of the main vegetables of human nutrition. Nitric Oxide, 2013, 30: 43-48. |
5. | Bode-Böger SM, Scalera F, Kielstein JT, et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol, 2006, 17(4): 1128-1134. |
6. | Ferrigno A, Rizzo V, Bianchi A, et al. Changes in ADMA/DDAH pathway after hepatic ischemia/reperfusion injury in rats: the role of bile. Biomed Res Int, 2014, 2014: 627434. |
7. | Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J, 2008, 32(6): 1639-1651. |
8. | Zoccali C, Maas R, Cutrupi S, et al. Asymmetric dimethyl-arginine (ADMA) response to inflammation in acute infections. Nephrol Dial Transplant, 2007, 22(3): 801-806. |
9. | Ruzsics I, Nagy L, Keki S, et al. L-arginine pathway in COPD patients with acute exacerbation: a new potential biomarker. COPD, 2016, 13(2): 139-145. |
10. | Zhang J, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos, 2018, 17(1): 13-21. |
11. | Córdoba-Lanús E, Baz-Dávila R, Espinoza-Jiménez A, et al. IL-8 gene variants are associated with lung function decline and multidimensional BODE index in COPD patients but not with disease susceptibility: a validation study. COPD, 2015, 12(1): 55-61. |
12. | Zhang X, Zheng H, Zhang H, et al. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine, 2011, 56(3): 717-725. |
13. | Celik H, Akpinar S, Karabulut H, et al. Evaluation of IL-8 nasal lavage levels and the effects of nasal involvement on disease severity in patients with stable chronic obstructive pulmonary disease. Inflammation, 2015, 38(2): 616-622. |
14. | 高玉楠, 杨靖, 宋沁馨, 等. 8-羟基脱氧鸟苷作为DNA氧化损伤标志物在疾病诊断中的应用. 药学与临床研究, 2012, 20(3): 223-228. |
15. | Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J, 2006, 28(1): 219-242. |
16. | Tkacova R, Kluchova Z, Joppa P, et al. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med, 2007, 101(8): 1670-1676. |
17. | Liu X, Deng KL, Chen S, et al. 8-Hydroxy-2’-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk J Med Sci, 2019, 49(1): 93-100. |
18. | Aloisio E, Dolci A, Panteghini M. Procalcitonin: between evidence and critical issues. Clin Chim Acta, 2019, 496: 7-12. |
19. | Weidner W, Wagenlehner FM. Re: Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Eur Urol, 2014, 66(1): 178. |
20. | 常春, 姚婉珍, 陈亚红, 等. 血清降钙素原对慢性阻塞性肺疾病加重期患者下呼吸道细菌感染的诊断价值. 北京大学学报(医学版), 2006, 38(4): 389-392. |
21. | Ergan B, Şahin AA, Topeli A. Serum procalcitonin as a biomarker for the prediction of bacterial exacerbation and mortality in severe COPD exacerbations requiring mechanical ventilation. Respiration, 2016, 91(4): 316-324. |
22. | Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(1): 10-15. |
23. | Kawamatawong T, Apiwattanaporn A, Siricharoonwong W. Serum inflammatory biomarkers and clinical outcomes of COPD exacerbation caused by different pathogens. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1625-1630. |
24. | 黄闯, 黄琨. 颗粒蛋白前体在炎症性疾病中的作用研究进展. 细胞与分子免疫学杂志, 2016, 32(2): 268-271. |
25. | Chen X, Liu J, Zhu M, et al. Progranulin is a novel biomarker for predicting an acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(10): 2525-2533. |
26. | Ungurs MJ, Sinden NJ, Stockley RA. Progranulin is a substrate for neutrophil-elastase and proteinase-3 in the airway and its concentration correlates with mediators of airway inflammation in COPD. Am J Physiol Lung Cell Mol Physiol, 2014, 306(1): L80-87. |
27. | Taylan M, Demir M, Kaya H, et al. Alterations of the neutrophil-lymphocyte ratio during the period of stable and acute exacerbation of chronic obstructive pulmonary disease patients. Clin Respir J, 2017, 11(3): 311-317. |
28. | Furutate R, Ishii T, Motegi T, et al. The neutrophil to lymphocyte ratio is related to disease severity and exacerbation in patients with chronic obstructive pulmonary disease. Intern Med, 2016, 55(3): 223-229. |
29. | Sakurai K, Chubachi S, Irie H, et al. Clinical utility of blood neutrophil-lymphocyte ratio in Japanese COPD patients. BMC Pulm Med, 2018, 18(1): 65. |
30. | Acartürk Tunçay E, Karakurt Z, Aksoy E, et al. Eosinophilic and noneosinophilic COPD patients with chronic respiratory failure: neutrophil-to-lymphocyte ratio as an exacerbation marker. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3361-3370. |
31. | Vedel-Krogh S, Nielsen SF, Lange P, et al. Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. The Copenhagen General Population Study. Am J Respir Crit Care Med, 2016, 193(9): 965-974. |
32. | Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science, 2004, 305(5691): 1776-1779. |
33. | Yun JH, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2018, 141(6): 2037-2047.e10. |
34. | Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med, 2015, 3(6): 435-442. |
35. | Guan X, Lu Y, Wang G, et al. The role of regulatory T cell in nontypeable Haemophilus influenzae-induced acute exacerbation of chronic obstructive pulmonary disease. Mediators Inflamm, 2018, 2018: 8387150. |
36. | Tan DB, Fernandez S, Price P, et al. Impaired function of regulatory T-cells in patients with chronic obstructive pulmonary disease (COPD). Immunobiology, 2014, 219(12): 975-979. |
37. | Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer, 2019, 18(1): 75. |
38. | Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009, 9(8): 581-593. |
39. | Moon HG, Kim SH, Gao J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 2014, 307(4): L326-337. |
40. | Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci, 2008, 33(10): 461-473. |
41. | Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci, 2019, 76(3): 441-451. |
42. | Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles, 2015, 4: 28388. |
43. | Tan DBA, Armitage J, Teo TH, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med, 2017, 132: 261-264. |
44. | Wei B, Sheng Li C. Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease. J Int Med Res, 2018, 46(9): 3890-3902. |
45. | Yin TP, Zhu ZQ, Mei ZF, et al. Analysis of viral infection and biomarkers in patients with acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(3): 1228-1239. |
46. | 赵春柳, 黄靓雯, 张利, 等. 慢性阻塞性肺疾病急性加重住院患者呼吸道病毒感染与炎症细胞因子的相关性. 中华结核和呼吸杂志, 2018, 41(12): 942-948. |
- 1. Regan EA, Hersh CP, Castaldi PJ, et al. Omics and the search for blood biomarkers in chronic obstructive pulmonary disease. Insights from COPDGene. Am J Respir Cell Mol Biol, 2019, 61(2): 143-149.
- 2. Wells JM, Parker MM, Oster RA, et al. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight, 2018, 3(22): e123614.
- 3. Chaudhuri R, McSharry C, Spears M, et al. Sputum matrix metalloproteinase-9 is associated with the degree of emphysema on computed tomography in COPD. Transl Respir Med, 2013, 1(1): 11.
- 4. Servillo L, Giovane A, Cautela D, et al. The methylarginines NMMA, ADMA, and SDMA are ubiquitous constituents of the main vegetables of human nutrition. Nitric Oxide, 2013, 30: 43-48.
- 5. Bode-Böger SM, Scalera F, Kielstein JT, et al. Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol, 2006, 17(4): 1128-1134.
- 6. Ferrigno A, Rizzo V, Bianchi A, et al. Changes in ADMA/DDAH pathway after hepatic ischemia/reperfusion injury in rats: the role of bile. Biomed Res Int, 2014, 2014: 627434.
- 7. Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J, 2008, 32(6): 1639-1651.
- 8. Zoccali C, Maas R, Cutrupi S, et al. Asymmetric dimethyl-arginine (ADMA) response to inflammation in acute infections. Nephrol Dial Transplant, 2007, 22(3): 801-806.
- 9. Ruzsics I, Nagy L, Keki S, et al. L-arginine pathway in COPD patients with acute exacerbation: a new potential biomarker. COPD, 2016, 13(2): 139-145.
- 10. Zhang J, Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos, 2018, 17(1): 13-21.
- 11. Córdoba-Lanús E, Baz-Dávila R, Espinoza-Jiménez A, et al. IL-8 gene variants are associated with lung function decline and multidimensional BODE index in COPD patients but not with disease susceptibility: a validation study. COPD, 2015, 12(1): 55-61.
- 12. Zhang X, Zheng H, Zhang H, et al. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine, 2011, 56(3): 717-725.
- 13. Celik H, Akpinar S, Karabulut H, et al. Evaluation of IL-8 nasal lavage levels and the effects of nasal involvement on disease severity in patients with stable chronic obstructive pulmonary disease. Inflammation, 2015, 38(2): 616-622.
- 14. 高玉楠, 杨靖, 宋沁馨, 等. 8-羟基脱氧鸟苷作为DNA氧化损伤标志物在疾病诊断中的应用. 药学与临床研究, 2012, 20(3): 223-228.
- 15. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J, 2006, 28(1): 219-242.
- 16. Tkacova R, Kluchova Z, Joppa P, et al. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med, 2007, 101(8): 1670-1676.
- 17. Liu X, Deng KL, Chen S, et al. 8-Hydroxy-2’-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk J Med Sci, 2019, 49(1): 93-100.
- 18. Aloisio E, Dolci A, Panteghini M. Procalcitonin: between evidence and critical issues. Clin Chim Acta, 2019, 496: 7-12.
- 19. Weidner W, Wagenlehner FM. Re: Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Eur Urol, 2014, 66(1): 178.
- 20. 常春, 姚婉珍, 陈亚红, 等. 血清降钙素原对慢性阻塞性肺疾病加重期患者下呼吸道细菌感染的诊断价值. 北京大学学报(医学版), 2006, 38(4): 389-392.
- 21. Ergan B, Şahin AA, Topeli A. Serum procalcitonin as a biomarker for the prediction of bacterial exacerbation and mortality in severe COPD exacerbations requiring mechanical ventilation. Respiration, 2016, 91(4): 316-324.
- 22. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(1): 10-15.
- 23. Kawamatawong T, Apiwattanaporn A, Siricharoonwong W. Serum inflammatory biomarkers and clinical outcomes of COPD exacerbation caused by different pathogens. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1625-1630.
- 24. 黄闯, 黄琨. 颗粒蛋白前体在炎症性疾病中的作用研究进展. 细胞与分子免疫学杂志, 2016, 32(2): 268-271.
- 25. Chen X, Liu J, Zhu M, et al. Progranulin is a novel biomarker for predicting an acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(10): 2525-2533.
- 26. Ungurs MJ, Sinden NJ, Stockley RA. Progranulin is a substrate for neutrophil-elastase and proteinase-3 in the airway and its concentration correlates with mediators of airway inflammation in COPD. Am J Physiol Lung Cell Mol Physiol, 2014, 306(1): L80-87.
- 27. Taylan M, Demir M, Kaya H, et al. Alterations of the neutrophil-lymphocyte ratio during the period of stable and acute exacerbation of chronic obstructive pulmonary disease patients. Clin Respir J, 2017, 11(3): 311-317.
- 28. Furutate R, Ishii T, Motegi T, et al. The neutrophil to lymphocyte ratio is related to disease severity and exacerbation in patients with chronic obstructive pulmonary disease. Intern Med, 2016, 55(3): 223-229.
- 29. Sakurai K, Chubachi S, Irie H, et al. Clinical utility of blood neutrophil-lymphocyte ratio in Japanese COPD patients. BMC Pulm Med, 2018, 18(1): 65.
- 30. Acartürk Tunçay E, Karakurt Z, Aksoy E, et al. Eosinophilic and noneosinophilic COPD patients with chronic respiratory failure: neutrophil-to-lymphocyte ratio as an exacerbation marker. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3361-3370.
- 31. Vedel-Krogh S, Nielsen SF, Lange P, et al. Blood eosinophils and exacerbations in chronic obstructive pulmonary disease. The Copenhagen General Population Study. Am J Respir Crit Care Med, 2016, 193(9): 965-974.
- 32. Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science, 2004, 305(5691): 1776-1779.
- 33. Yun JH, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2018, 141(6): 2037-2047.e10.
- 34. Pascoe S, Locantore N, Dransfield MT, et al. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med, 2015, 3(6): 435-442.
- 35. Guan X, Lu Y, Wang G, et al. The role of regulatory T cell in nontypeable Haemophilus influenzae-induced acute exacerbation of chronic obstructive pulmonary disease. Mediators Inflamm, 2018, 2018: 8387150.
- 36. Tan DB, Fernandez S, Price P, et al. Impaired function of regulatory T-cells in patients with chronic obstructive pulmonary disease (COPD). Immunobiology, 2014, 219(12): 975-979.
- 37. Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer, 2019, 18(1): 75.
- 38. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 2009, 9(8): 581-593.
- 39. Moon HG, Kim SH, Gao J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 2014, 307(4): L326-337.
- 40. Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci, 2008, 33(10): 461-473.
- 41. Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci, 2019, 76(3): 441-451.
- 42. Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles, 2015, 4: 28388.
- 43. Tan DBA, Armitage J, Teo TH, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med, 2017, 132: 261-264.
- 44. Wei B, Sheng Li C. Changes in Th1/Th2-producing cytokines during acute exacerbation chronic obstructive pulmonary disease. J Int Med Res, 2018, 46(9): 3890-3902.
- 45. Yin TP, Zhu ZQ, Mei ZF, et al. Analysis of viral infection and biomarkers in patients with acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2018, 12(3): 1228-1239.
- 46. 赵春柳, 黄靓雯, 张利, 等. 慢性阻塞性肺疾病急性加重住院患者呼吸道病毒感染与炎症细胞因子的相关性. 中华结核和呼吸杂志, 2018, 41(12): 942-948.
-
Previous Article
应用体外膜肺氧合成功救治暴发性心肌炎致心室电风暴持续 170 分钟一例 -
Next Article
生物学标志物在渗出性胸腔积液诊断的研究进展