Citation: 王蒙, 周庆涛. 变异性通气的原理与应用价值. Chinese Journal of Respiratory and Critical Care Medicine, 2019, 18(2): 193-198. doi: 10.7507/1671-6205.201701029 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Ivanov PC, Amaral LA, Goldberger AL, et al. Multifractality in human heartbeat dynamics. Nature, 1999, 399(6735): 461-465. |
2. | Tobin MJ, Mador MJ, Guenther SM, et al. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol, 1988, 65(1): 309-317. |
3. | Bendixen HH, Smith GM, Mead J. Pattern of ventilation in young adults. J Appl Physiol, 1964, 19(2): 195-198. |
4. | Suki B, Alencar AM, Sujeer MK, et al. Life-support system benefits from noise. Nature, 1998, 393(6681): 127-128. |
5. | Brack T, Jubran A, Tobin MJ. Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am J Respir Crit Care Med, 2002, 165(9): 1260-1264. |
6. | Loveridge B, West P, Anthonisen NR, et al. Breathing patterns in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis, 1984, 130(5): 730-733. |
7. | Wysocki M, Cracco C, Teixeira A, et al. Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med, 2006, 34(8): 2076-2083. |
8. | Mutch WA, Eschun GM, Kowalski SE, et al. Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. Br J Anaesth, 2000, 84(2): 197-203. |
9. | Mutch WA, Buchman TG, Girling LG, et al. Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm. Crit Care Med, 2007, 35(7): 1749-1755. |
10. | Mutch WA, Harms S, Ruth Graham M, et al. Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med, 2000, 162(1): 319-323. |
11. | Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med, 2009, 179(8): 684-693. |
12. | Thammanomai A, Hueser LE, Majumdar A, et al. Design of a new variable ventilation method optimized for lung recruitment in mice. J Appl Physiol, 2008, 104(5): 1329-1340. |
13. | Beda A, Spieth PM, Handzsuj T, et al. A novel adaptive control system for noisy pressure-controlled ventilation: a numerical simulation and bench test study. Intensive Care Med, 2010, 36(1): 164-168. |
14. | Froehlich KF, Graham MR, Buchman TG, et al. Physiological noise versus white noise to drive a variable ventilator in a porcine model of lung injury. Can J Anaesth, 2008, 55(9): 577-586. |
15. | Pelosi P, Rocco PR. Airway closure: the silent killer of peripheral airways. Crit Care, 2007, 11(1): 114. |
16. | Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl JMed, 2013, 369(22): 2126-2136. |
17. | Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A Math Gen, 1981, 14(11): 453-457. |
18. | Suki B, Barabási AL, Hantos Z, et al. Avalanches and power-law behaviour in lung inflation. Nature, 1994, 368(6472): 615-618. |
19. | Arold SP, Suki B, Alencar AM, et al. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol, 2003, 285(2): 370-375. |
20. | Samary CS, Moraes L, Santos CL, et al. Lung functional and biologic responses to variable ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Crit Care Med, 2016, 44(7): e553-562. |
21. | Brewster JF, Graham MR, Mutch WA. Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J R Soc Interface, 2005, 2(4): 393-396. |
22. | Graham MR, Goertzen AL, Girling LG, et al. Quantitative computed tomography in porcine lung injury with variable versus conventional ventilation: recruitment and surfactant replacement. Crit Care Med, 2011, 39(7): 1721-1730. |
23. | Bellardine CL, Hoffman AM, Tsai L, et al. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med, 2006, 34(2): 439-445. |
24. | Spieth PM, Carvalho AR, Güldner A, et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med, 2011, 39(4): 746-755. |
25. | Mutch WA, Graham MR, Girling LG, et al. Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res, 2005, 6(1): 41. |
26. | Camilo LM, Ávila MB, Cruz LFS, et al. Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PLoS ONE, 2014, 9(11): e110817. |
27. | Walesa M, Bayat S, Albu G, et al. Comparison between neurally-assisted, controlled, and physiologically variable ventilation in healthy rabbits. Br J Anaesth, 2018, 121(4): 918-927. |
28. | Camilo LM, Motta-Ribeiro GC, de Ávila MB, et al. Variable ventilation associated with recruitment maneuver minimizes tissue damage and pulmonary inflammation in anesthetized lung-healthy rats. Anesth Analg, 2018, 127(3): 784-791. |
29. | Lefevre GR, Kowalski SE, Girling LG, et al. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med, 1996, 154(5): 1567-1572. |
30. | Boker A, Graham MR, Walley KR, et al. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2002, 165(4): 456-462. |
31. | Mutch WA, Harms S, Lefevre GR, et al. Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med, 2000, 28(7): 2457-2464. |
32. | Funk DJ, Graham MR, Girling LG, et al. A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res, 2004, 5(1): 22. |
33. | Thammanomai A, Hamakawa H, Bartolák-Suki E, et al. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PLoS One, 2013, 8(1): e53934. |
34. | Nam AJ, Brower RG, Fessler HE, et al. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med, 2000, 161(6): 1797-1804. |
35. | Arold SP, Mora R, Lutchen KR, et al. Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med, 2002, 165(3): 366-371. |
36. | Güldner A, Robert H, Alessandro B, et al. Periodic fluctuation of tidal volumes further improves variable ventilation in experimental acute respiratory distress syndrome. Front Physiol, 2018, 7(9): 905. |
37. | Gama AM, Spieth PM, Pelosi P, et al. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med, 2008, 36(3): 818-827. |
38. | Graham MR, Gulati H, Kha L, et al. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can J Anaesth, 2011, 58(8): 740-750. |
39. | Spieth PM, Carvalho AR, Güldner A, et al. Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology, 2009, 110(2): 342-350. |
40. | Spieth PM, Güldner A, Beda A, et al. Comparative effects of proportional assist and variable pressure support ventilation on lung function and damage in experimental lung injury. Crit Care Med, 2012, 40(9): 2654-2661. |
41. | Ilka F, Javan M, Raoufy MR. Variable ventilation decreases airway responsiveness and improves ventilation efficiency in a rat model of asthma. Respir Physiol Neurobiol, 2018, 9(255): 39-42. |
42. | Henriques I, Padilha GA, Huhle R, et al. Comparison between variable and conventional volume-controlled ventilation on cardiorespiratory parameters in experimental emphysema. Front Physiol, 2016, 7: 277. |
43. | Wierzchon CGRS, Gisele P, Rocha NN, et al. Variability in tidal volume affects lung and cardiovascular function differentially in a rat model of experimental emphysema. Front Physiol, 2017, 12(8): 1071. |
44. | Kowalski S, McMullen MC, Girling LG, et al. Biologically variable ventilation in patients with acute lung injury: a pilot study. Can J Anaesth, 2013, 60(5): 502-503. |
45. | Spieth PM, Güldner A, Huhle R, et al. Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care, 2013, 17(5): R261. |
46. | Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology, 2004, 100(3): 608-616. |
47. | Wang R, Chen J, Wu J. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. Int J Clin Exp Med, 2015, 8(11): 21208-21214. |
- 1. Ivanov PC, Amaral LA, Goldberger AL, et al. Multifractality in human heartbeat dynamics. Nature, 1999, 399(6735): 461-465.
- 2. Tobin MJ, Mador MJ, Guenther SM, et al. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol, 1988, 65(1): 309-317.
- 3. Bendixen HH, Smith GM, Mead J. Pattern of ventilation in young adults. J Appl Physiol, 1964, 19(2): 195-198.
- 4. Suki B, Alencar AM, Sujeer MK, et al. Life-support system benefits from noise. Nature, 1998, 393(6681): 127-128.
- 5. Brack T, Jubran A, Tobin MJ. Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am J Respir Crit Care Med, 2002, 165(9): 1260-1264.
- 6. Loveridge B, West P, Anthonisen NR, et al. Breathing patterns in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis, 1984, 130(5): 730-733.
- 7. Wysocki M, Cracco C, Teixeira A, et al. Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med, 2006, 34(8): 2076-2083.
- 8. Mutch WA, Eschun GM, Kowalski SE, et al. Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. Br J Anaesth, 2000, 84(2): 197-203.
- 9. Mutch WA, Buchman TG, Girling LG, et al. Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm. Crit Care Med, 2007, 35(7): 1749-1755.
- 10. Mutch WA, Harms S, Ruth Graham M, et al. Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med, 2000, 162(1): 319-323.
- 11. Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med, 2009, 179(8): 684-693.
- 12. Thammanomai A, Hueser LE, Majumdar A, et al. Design of a new variable ventilation method optimized for lung recruitment in mice. J Appl Physiol, 2008, 104(5): 1329-1340.
- 13. Beda A, Spieth PM, Handzsuj T, et al. A novel adaptive control system for noisy pressure-controlled ventilation: a numerical simulation and bench test study. Intensive Care Med, 2010, 36(1): 164-168.
- 14. Froehlich KF, Graham MR, Buchman TG, et al. Physiological noise versus white noise to drive a variable ventilator in a porcine model of lung injury. Can J Anaesth, 2008, 55(9): 577-586.
- 15. Pelosi P, Rocco PR. Airway closure: the silent killer of peripheral airways. Crit Care, 2007, 11(1): 114.
- 16. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl JMed, 2013, 369(22): 2126-2136.
- 17. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A Math Gen, 1981, 14(11): 453-457.
- 18. Suki B, Barabási AL, Hantos Z, et al. Avalanches and power-law behaviour in lung inflation. Nature, 1994, 368(6472): 615-618.
- 19. Arold SP, Suki B, Alencar AM, et al. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol, 2003, 285(2): 370-375.
- 20. Samary CS, Moraes L, Santos CL, et al. Lung functional and biologic responses to variable ventilation in experimental pulmonary and extrapulmonary acute respiratory distress syndrome. Crit Care Med, 2016, 44(7): e553-562.
- 21. Brewster JF, Graham MR, Mutch WA. Convexity, Jensen’s inequality and benefits of noisy mechanical ventilation. J R Soc Interface, 2005, 2(4): 393-396.
- 22. Graham MR, Goertzen AL, Girling LG, et al. Quantitative computed tomography in porcine lung injury with variable versus conventional ventilation: recruitment and surfactant replacement. Crit Care Med, 2011, 39(7): 1721-1730.
- 23. Bellardine CL, Hoffman AM, Tsai L, et al. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med, 2006, 34(2): 439-445.
- 24. Spieth PM, Carvalho AR, Güldner A, et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med, 2011, 39(4): 746-755.
- 25. Mutch WA, Graham MR, Girling LG, et al. Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res, 2005, 6(1): 41.
- 26. Camilo LM, Ávila MB, Cruz LFS, et al. Positive end-expiratory pressure and variable ventilation in lung-healthy rats under general anesthesia. PLoS ONE, 2014, 9(11): e110817.
- 27. Walesa M, Bayat S, Albu G, et al. Comparison between neurally-assisted, controlled, and physiologically variable ventilation in healthy rabbits. Br J Anaesth, 2018, 121(4): 918-927.
- 28. Camilo LM, Motta-Ribeiro GC, de Ávila MB, et al. Variable ventilation associated with recruitment maneuver minimizes tissue damage and pulmonary inflammation in anesthetized lung-healthy rats. Anesth Analg, 2018, 127(3): 784-791.
- 29. Lefevre GR, Kowalski SE, Girling LG, et al. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med, 1996, 154(5): 1567-1572.
- 30. Boker A, Graham MR, Walley KR, et al. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med, 2002, 165(4): 456-462.
- 31. Mutch WA, Harms S, Lefevre GR, et al. Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med, 2000, 28(7): 2457-2464.
- 32. Funk DJ, Graham MR, Girling LG, et al. A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res, 2004, 5(1): 22.
- 33. Thammanomai A, Hamakawa H, Bartolák-Suki E, et al. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PLoS One, 2013, 8(1): e53934.
- 34. Nam AJ, Brower RG, Fessler HE, et al. Biologic variability in mechanical ventilation rate and tidal volume does not improve oxygenation or lung mechanics in canine oleic acid lung injury. Am J Respir Crit Care Med, 2000, 161(6): 1797-1804.
- 35. Arold SP, Mora R, Lutchen KR, et al. Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med, 2002, 165(3): 366-371.
- 36. Güldner A, Robert H, Alessandro B, et al. Periodic fluctuation of tidal volumes further improves variable ventilation in experimental acute respiratory distress syndrome. Front Physiol, 2018, 7(9): 905.
- 37. Gama AM, Spieth PM, Pelosi P, et al. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med, 2008, 36(3): 818-827.
- 38. Graham MR, Gulati H, Kha L, et al. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury. Can J Anaesth, 2011, 58(8): 740-750.
- 39. Spieth PM, Carvalho AR, Güldner A, et al. Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology, 2009, 110(2): 342-350.
- 40. Spieth PM, Güldner A, Beda A, et al. Comparative effects of proportional assist and variable pressure support ventilation on lung function and damage in experimental lung injury. Crit Care Med, 2012, 40(9): 2654-2661.
- 41. Ilka F, Javan M, Raoufy MR. Variable ventilation decreases airway responsiveness and improves ventilation efficiency in a rat model of asthma. Respir Physiol Neurobiol, 2018, 9(255): 39-42.
- 42. Henriques I, Padilha GA, Huhle R, et al. Comparison between variable and conventional volume-controlled ventilation on cardiorespiratory parameters in experimental emphysema. Front Physiol, 2016, 7: 277.
- 43. Wierzchon CGRS, Gisele P, Rocha NN, et al. Variability in tidal volume affects lung and cardiovascular function differentially in a rat model of experimental emphysema. Front Physiol, 2017, 12(8): 1071.
- 44. Kowalski S, McMullen MC, Girling LG, et al. Biologically variable ventilation in patients with acute lung injury: a pilot study. Can J Anaesth, 2013, 60(5): 502-503.
- 45. Spieth PM, Güldner A, Huhle R, et al. Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. Crit Care, 2013, 17(5): R261.
- 46. Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology, 2004, 100(3): 608-616.
- 47. Wang R, Chen J, Wu J. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. Int J Clin Exp Med, 2015, 8(11): 21208-21214.
-
Previous Article
应用食道压力指导急性呼吸窘迫综合征患者呼气末正压的设置 -
Next Article
特发性肺纤维化治疗新进展