The development of immunotherapy has revolutionized the landscape of cancer treatment. Personalized neoantigen vaccines are attractive systemic immunotherapies that trigger specific T-cell responses against highly specific neoantigens, and activate and expand helper and cytotoxic T-lymphocytes to enhance anti-tumor immunity. Based on the rapid development of bioinformatics and the continuous update of sequencing technology, cancer immunotherapy with tumor neoantigens has made promising breakthroughs and progress. Researchers are exploring the value of neoantigen vaccines alone or in combination in different tumor types. We provide an overview of the complex process that is necessary to generate a personalized neoantigen vaccine, discuss the current status of clinical studies and application testing personalized neoantigen vaccines in patients with cancer and future perspectives on this novel, personalized approach to immunotherapy.
Citation: WU Qiuji, LI Qiu. Advances in the clinical research of personalized neoantigen vaccines. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(8): 1006-1017. doi: 10.7507/1007-9424.202206045 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Shemesh CS, Hsu JC, Hosseini I, et al. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol Ther, 2021, 29(2): 555-570. |
2. | Castle JC, Uduman M, Pabla S, et al. Mutation-derived neoantigens for cancer immunotherapy. Front Immunol, 2019, 10: 1856. doi: 10.3389/fimmu.2019.01856. |
3. | Hu Z, Leet DE, Allesøe RL, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med, 2021, 27(3): 515-525. |
4. | Brentville VA, Vankemmelbeke M, Metheringham RL, et al. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin Immunol, 2020, 47: 101393. doi: 10.1016/j.smim.2020.101393. |
5. | Malaker SA, Penny SA, Steadman LG, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res, 2017, 5(5): 376-384. |
6. | Smith CC, Selitsky SR, Chai S, et al. Alternative tumour-specific antigens. Nat Rev Cancer, 2019, 19(8): 465-478. |
7. | Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662): 217-221. |
8. | Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662): 222-226. |
9. | Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738): 240-245. |
10. | Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ⅰb glioblastoma trial. Nature, 2019, 565(7738): 234-239. |
11. | Cai Z, Su X, Qiu L, et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion. Mol Cancer, 2021, 20(1): 164. doi: 10.1186/s12943-021-01467-8. |
12. | Peng S, Chen S, Hu W, et al. Combination neoantigen-based dendritic cell vaccination and adoptive T-Cell transfer induces antitumor responses against recurrence of hepatocellular carcinoma. Cancer Immunol Res, 2022, 10(6): 728-744. |
13. | Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230): 124-128. |
14. | Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350(6257): 207-211. |
15. | Roudko V, Bozkus CC, Orfanelli T, et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell, 2020, 183(6): 1634-1649.e17. |
16. | Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol, 2017, 18(8): 1009-1021. |
17. | Lou Y, Asmann Y, Thomas M, et al. MA 05.01 integrating INDEL mutations into neoantigen prediction in lung cancer: developing personalized cancer vaccines. Mini Oral Abstract Sessions, 2017, 12(11 Suppl 2): S1814-S1815. |
18. | Mertens F, Johansson B, Fioretos T, et al. The emerging complexity of gene fusions in cancer. Nat Rev Cancer, 2015, 15(6): 371-381. |
19. | Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature, 1985, 315(6020): 550-554. |
20. | Sato Y, Nabeta Y, Tsukahara T, et al. Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24(+) patients with synovial sarcoma. J Immunol, 2002, 169(3): 1611-1618. |
21. | Kalina JL, Neilson DS, Lin YY, et al. Mutational analysis of gene fusions predicts novel MHC class Ⅰ-restricted T-cell epitopes and immune signatures in a subset of prostate cancer. Clin Cancer Res, 2017, 23(24): 7596-7607. |
22. | Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med, 2019, 25(5): 767-775. |
23. | Zamora AE, Crawford JC, Allen EK, et al. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses. Sci Transl Med, 2019, 11(498): eaat8549. doi: 10.1126/scitranslmed.aat8549. |
24. | Wei Z, Zhou C, Zhang Z, et al. The landscape of tumor fusion neoantigens: A pan-cancer analysis. iScience, 2019, 21: 249-260. |
25. | Dai X, Theobard R, Cheng H, et al. Fusion genes: A promising tool combating against cancer. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 149-160. |
26. | Jayasinghe RG, Cao S, Gao Q, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep, 2018, 23(1): 270-281.e3. |
27. | Smart AC, Margolis CA, Pimentel H, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol, 2018, 36(11): 1056-1058. |
28. | Jung H, Lee D, Lee J, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet, 2015, 47(11): 1242-1248. |
29. | Dvinge H, Bradley RK. Widespread intron retention diversifies most cancer transcriptomes. Genome Med, 2015, 7(1): 45. doi: 10.1186/s13073-015-0168-9. |
30. | Kahles A, Lehmann KV, Toussaint NC, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell, 2018, 34(2): 211-224.e6. |
31. | Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res, 2012, 72(19): 4875-4882. |
32. | Chen F, Zou Z, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest, 2019, 129(5): 2056-2070. |
33. | Bhagwate AV, Liu Y, Winham SJ, et al. Bioinformatics and DNA-extraction strategies to reliably detect genetic variants from FFPE breast tissue samples. BMC Genomics, 2019, 20(1): 689. doi: 10.1186/s12864-019-6056-8. |
34. | de Schaetzen van Brienen L, Larmuseau M, Van der Eecken K, et al. Comparative analysis of somatic variant calling on matched FF and FFPE WGS samples. BMC Med Genomics, 2020, 13(1): 94. doi: 10.1186/s12920-020-00746-5. |
35. | Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput Struct Biotechnol J, 2018, 16: 15-24. |
36. | Hwang S, Kim E, Lee I, et al. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep, 2015, 5: 17875. doi: 10.1038/srep17875. |
37. | Karasaki T, Nagayama K, Kuwano H, et al. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci, 2017, 108(2): 170-177. |
38. | Rathe SK, Popescu FE, Johnson JE, et al. Identification of candidate neoantigens produced by fusion transcripts in human osteosarcomas. Sci Rep, 2019, 9(1): 358. doi: 10.1038/s41598-018-36840-z. |
39. | Benjamin D, Sato T, Cibulskis K, et al. Calling somatic SNVs and indels with Mutect2. 2019: 861054. https://www.biorxiv.org/content/10.1101/v1.abstract. |
40. | Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 2013, 31(3): 213-219. |
41. | Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods, 2018, 15(8): 591-594. |
42. | Saunders CT, Wong WS, Swamy S, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics, 2012, 28(14): 1811-1817. |
43. | Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res, 2012, 22(3): 568-576. |
44. | Larson DE, Harris CC, Chen K, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics, 2012, 28(3): 311-317. |
45. | ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793): 82-93. |
46. | Richters MM, Xia H, Campbell KM, et al. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med, 2019, 11(1): 56. doi: 10.1186/s13073-019-0666-2. |
47. | De Mattos-Arruda L, Vazquez M, Finotello F, et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol, 2020, 31(8): 978-990. |
48. | Robinson J, Barker DJ, Georgiou X, et al. IPD-IMGT/HLA database. Nucleic Acids Res, 2020, 48(D1): D948-D955. |
49. | González-Galarza FF, Takeshita LY, Santos EJ, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res, 2015, 43(Database issue): D784-D788. |
50. | Zhao W, Sher X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLoS Comput Biol, 2018, 14(11): e1006457. doi: 10.1371/journal.pcbi.1006457. |
51. | Paul S, Croft NP, Purcell AW, et al. Benchmarking predictions of MHC class Ⅰ restricted T cell epitopes in a comprehensively studied model system. PLoS Comput Biol, 2020, 16(5): e1007757. doi: 10.1371/journal.pcbi.1007757. |
52. | Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class Ⅰ system. Bioinformatics, 2016, 32(4): 511-517. |
53. | Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: Improved peptide-MHC class Ⅰ interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017, 199(9): 3360-3368. |
54. | Liu G, Li D, Li Z, et al. PSSMHCpan: a novel PSSM-based software for predicting class Ⅰ peptide-HLA binding affinity. Gigascience, 2017, 6(5): 1-11. |
55. | Pabinger S, Dander A, Fischer M, et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform, 2014, 15(2): 256-278. |
56. | Wells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell, 2020, 183(3): 818-834.e13. |
57. | Blaha DT, Anderson SD, Yoakum DM, et al. High-throughput stability screening of neoantigen/HLA complexes improves immunogenicity predictions. Cancer Immunol Res, 2019, 7(1): 50-61. |
58. | Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 1998, 393(6684): 480-483. |
59. | Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, 2022, 21(4): 261-282. |
60. | Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class Ⅱ epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520(7549): 692-696. |
61. | Andreatta M, Karosiene E, Rasmussen M, et al. Accurate pan-specific prediction of peptide-MHC class Ⅱ binding affinity with improved binding core identification. Immunogenetics, 2015, 67(11-12): 641-650. |
62. | Abelin JG, Harjanto D, Malloy M, et al. Defining HLA-Ⅱ ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity, 2021, 54(2): 388. doi: 10.1016/j.immuni.2020.12.005. |
63. | Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class Ⅱ epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol, 2019, 37(11): 1283-1286. |
64. | Chen B, Khodadoust MS, Olsson N, et al. Predicting HLA class Ⅱ antigen presentation through integrated deep learning. Nat Biotechnol, 2019, 37(11): 1332-1343. |
65. | Reynisson B, Barra C, Kaabinejadian S, et al. Improved prediction of MHC Ⅱ antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res, 2020, 19(6): 2304-2315. |
66. | Bijker MS, van den Eeden SJ, Franken KL, et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freun’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol, 2007, 179(8): 5033-5040. |
67. | Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines. Nat Rev Cancer, 2021, 21(6): 360-378. |
68. | Rock KL, Reits E, Neefjes J. Present yourself! By MHC class Ⅰ and MHC class Ⅱ molecules. Trends Immunol, 2016, 37(11): 724-737. |
69. | Ma W, Stroobant V, Heirman C, et al. The vacuolar pathway of long peptide cross-presentation can be TAP dependent. J Immunol, 2019, 202(2): 451-459. |
70. | Ménager J, Ebstein F, Oger R, et al. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014, 9(2): e89897. doi: 10.1371/journal.pone.0089897. |
71. | Hambach L, Aghai Z, Pool J, et al. Peptide length extension skews the minor HA-1 antigen presentation toward activated dendritic cells but reduces its presentation efficiency. J Immunol, 2010, 185(8): 4582-4589. |
72. | Perez SA, von Hofe E, Kallinteris NL, et al. A new era in anticancer peptide vaccines. Cancer, 2010, 116(9): 2071-2080. |
73. | van der Burg SH, Bijker MS, Welters MJ, et al. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev, 2006, 58(8): 916-930. |
74. | Fritah H, Rovelli R, Chiang CL, et al. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev, 2022, 106: 102383. doi: 10.1016/j.ctrv.2022.102383. |
75. | Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines, 2016, 15(3): 313-329. |
76. | Duperret EK, Perales-Puchalt A, Stoltz R, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class Ⅰ CD8+ T-cell responses, impacting tumor challenge. Cancer Immunol Res, 2019, 7(2): 174-182. |
77. | Yang X, Fan J, Wu Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. Nanomedicine, 2021, 37: 102443. doi: 10.1016/j.nano.2021.102443. |
78. | Aurisicchio L, Salvatori E, Lione L, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019, 38(1): 78. doi: 10.1186/s13046-019-1084-4. |
79. | Perales R, Yarchoan M, Cooch N, et al. Personalized neoantigen DNA vaccines expand tumor-specific T cells in the periphery which infiltrate the tumor in hepatocellular carcinoma. J Clin Oncol, 2022, 40(16_suppl): 2638. doi: 10.1200/JCO.2022.40.16_suppl.2638. |
80. | Vormehr M, Türeci Ö, Sahin U. Harnessing tumor mutations for truly individualized cancer vaccines. Annu Rev Med, 2019, 70: 395-407. |
81. | Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534(7607): 396-401. |
82. | Beck JD, Reidenbach D, Salomon N, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer, 2021, 20(1): 69. doi: 10.1186/s12943-021-01348-0. |
83. | Cafri G, Gartner JJ, Zaks T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest, 2020, 130(11): 5976-5988. |
84. | Esprit A, de Mey W, Bahadur Shahi R, et al. Neo-antigen mRNA vaccines. Vaccines (Basel), 2020, 8(4): 776. doi: 10.3390/vaccines8040776. |
85. | Zhao X, Pan X, Wang Y, et al. Targeting neoantigens for cancer immunotherapy. Biomark Res, 2021, 9(1): 61. doi: 10.1186/s40364-021-00315-7. |
86. | Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol, 2020, 13(1): 107. doi: 10.1186/s13045-020-00939-6. |
87. | Harari A, Graciotti M, Bassani-Sternberg M, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov, 2020, 19(9): 635-652. |
88. | Carreno BM, Magrini V, Becker-Hapak M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015, 348(6236): 803-808. |
89. | Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A phase Ⅰb trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 2020, 183(2): 347-362.e24. |
90. | Ding Z, Li Q, Zhang R, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther, 2021, 6(1): 26. doi: 10.1038/s41392-020-00448-5. |
91. | Balan S, Radford KJ, Bhardwaj N. Unexplored horizons of cDC1 in immunity and tolerance. Adv Immunol, 2020, 148: 49-91. |
92. | Balan S, Arnold-Schrauf C, Abbas A, et al. Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell Rep, 2018, 24(7): 1902-1915.e6. |
93. | Lim S, Park J, Shim MK, et al. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9(25): 7906-7923. |
94. | Irvine DJ, Hanson MC, Rakhra K, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev, 2015, 115(19): 11109-11146. |
95. | Liu H, Moynihan KD, Zheng Y, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507(7493): 519-522. |
96. | Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol, 2017, 12(7): 648-654. |
97. | Ni Q, Zhang F, Liu Y, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv, 2020, 6(12): eaaw6071. doi: 10.1126/sciadv.aaw6071. |
98. | Wang Y, Zhao Q, Zhao B, et al. Remodeling tumor-associated neutrophils to enhance dendritic cell-based HCC neoantigen nano-vaccine efficiency. Adv Sci (Weinh), 2022, 9(11): e2105631. doi: 10.1002/advs.202105631. |
99. | Baharom F, Ramirez-Valdez RA, Tobin KKS, et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat Immunol, 2021, 22(1): 41-52. |
100. | Arbelaez CA, Estrada J, Gessner MA, et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. NPJ Vaccines, 2020, 5(1): 106. doi: 10.1038/s41541-020-00253-9. |
101. | Yu X, Dai Y, Zhao Y, et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun, 2020, 11(1): 1110. doi: 10.1038/s41467-020-14906-9. |
102. | Kuai R, Ochyl LJ, Bahjat KS, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater, 2017, 16(4): 489-496. |
103. | Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov, 2015, 5(11): 1164-1177. |
104. | Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection. Cell, 2018, 175(3): 751-765.e16. |
105. | Jiménez-Sánchez A, Memon D, Pourpe S, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell, 2017, 170(5): 927-938.e20. |
106. | Leong TL, Gayevskiy V, Steinfort DP, et al. Deep multi-region whole-genome sequencing reveals heterogeneity and gene-by-environment interactions in treatment-naive, metastatic lung cancer. Oncogene, 2019, 38(10): 1661-1675. |
107. | Jiang J, Natarajan K, Boyd LF, et al. Crystal structure of a TAPBPR-MHC Ⅰ complex reveals the mechanism of peptide editing in antigen presentation. Science, 2017, 358(6366): 1064-1068. |
108. | Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res, 2020, 99(7): 769-774. |
109. | Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528): 577-581. |
110. | Simoni Y, Becht E, Fehlings M, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature, 2018, 557(7706): 575-579. |
111. | Fehlings M, Simoni Y, Penny HL, et al. Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8+ T cells. Nat Commun, 2017, 8(1): 562. doi: 10.1038/s41467-017-00627-z. |
112. | Gubin MM, Esaulova E, Ward JP, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell, 2018, 175(4): 1014-1030.e19. |
113. | Slota M, Lim JB, Dang Y, et al. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines, 2011, 10(3): 299-306. |
114. | Lehmann PV, Zhang W. Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol, 2012, 792: 3-23. |
115. | van der Burg SH, Kalos M, Gouttefangeas C, et al. Harmonization of immune biomarker assays for clinical studies. Sci Transl Med, 2011, 3(108. doi: 108ps44): 108ps44. |
116. | Silverman E. Can we afford the war on cancer? Biotechnol Healthc, 2012, 9(4): 13-16. |
117. | Fang W, Jin H, Zhou H, et al. Intratumoral heterogeneity as a predictive biomarker in anti-PD-(L)1 therapies for non-small cell lung cancer. Mol Cancer, 2021, 20(1): 37. doi: 10.1186/s12943-021-01331-9. |
118. | Knuschke T, Kollenda S, Wenzek C, et al. A combination of anti-PD-L1 treatment and therapeutic vaccination facilitates improved retroviral clearance via reactivation of highly exhausted T cells. mBio, 2021, 12(1): e02121-2120. |
119. | Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol, 2013, 4: 114. |
120. | Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med, 2013, 19(4): 465-472. |
121. | Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med, 1994, 180(4): 1263-1272. |
122. | van Kooten C, Banchereau J. Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol, 1997, 9(3): 330-337. |
123. | Hoffmann TK, Meidenbauer N, Müller-Berghaus J, et al. Proinflammatory cytokines and CD40 ligand enhance cross-presentation and cross-priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother, 2001, 24(2): 162-171. |
124. | van Mierlo GJ, Boonman ZF, Dumortier HM, et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol, 2004, 173(11): 6753-6759. |
125. | Yin W, Gorvel L, Zurawski S, et al. Functional specialty of CD40 and dendritic cell surface lectins for exogenous antigen presentation to CD8(+) and CD4(+) T cells. EBioMedicine, 2016, 5: 46-58. |
126. | Sonpavde G, McMannis JD, Bai Y, et al. Phase Ⅰ trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunol Immunother, 2017, 66(10): 1345-1357. |
127. | Zhang R, Tang L, Tian Y, et al. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on neoantigens. Biomaterials, 2020, 241: 119852. doi: 10.1016/j.biomaterials.2020.119852. |
128. | Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512(7514): 324-327. |
129. | Bunse L, Schumacher T, Sahm F, et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest, 2015, 125(2): 593-606. |
130. | Melief CJ. Mutation-specific T cells for immunotherapy of gliomas. N Engl J Med, 2015, 372(20): 1956-1958. |
131. | Pellegatta S, Valletta L, Corbetta C, et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun, 2015, 3: 4. doi: 10.1186/s40478-014-0180-0. |
132. | Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med, 2018, 24(8): 1192-1203. |
133. | Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021, 592(7854): 463-468. |
134. | Malekzadeh P, Pasetto A, Robbins PF, et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest, 2019, 129(3): 1109-1114. |
135. | Wang C, Shi M, Zhang L, et al. Identification of KRAS G12V associated clonal neoantigens and immune microenvironment in long-term survival of pancreatic adenocarcinoma. Cancer Immunol Immunother, 2022, 71(2): 491-504. |
136. | Hsiue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutation. Science, 2021, 371(6533): eabc8697. doi: 10.1126/science.abc8697. |
137. | Chandran SS, Ma J, Klatt MG, et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat Med, 2022, 28(5): 946-957. |
- 1. Shemesh CS, Hsu JC, Hosseini I, et al. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol Ther, 2021, 29(2): 555-570.
- 2. Castle JC, Uduman M, Pabla S, et al. Mutation-derived neoantigens for cancer immunotherapy. Front Immunol, 2019, 10: 1856. doi: 10.3389/fimmu.2019.01856.
- 3. Hu Z, Leet DE, Allesøe RL, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat Med, 2021, 27(3): 515-525.
- 4. Brentville VA, Vankemmelbeke M, Metheringham RL, et al. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin Immunol, 2020, 47: 101393. doi: 10.1016/j.smim.2020.101393.
- 5. Malaker SA, Penny SA, Steadman LG, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res, 2017, 5(5): 376-384.
- 6. Smith CC, Selitsky SR, Chai S, et al. Alternative tumour-specific antigens. Nat Rev Cancer, 2019, 19(8): 465-478.
- 7. Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662): 217-221.
- 8. Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662): 222-226.
- 9. Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738): 240-245.
- 10. Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ⅰb glioblastoma trial. Nature, 2019, 565(7738): 234-239.
- 11. Cai Z, Su X, Qiu L, et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion. Mol Cancer, 2021, 20(1): 164. doi: 10.1186/s12943-021-01467-8.
- 12. Peng S, Chen S, Hu W, et al. Combination neoantigen-based dendritic cell vaccination and adoptive T-Cell transfer induces antitumor responses against recurrence of hepatocellular carcinoma. Cancer Immunol Res, 2022, 10(6): 728-744.
- 13. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230): 124-128.
- 14. Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350(6257): 207-211.
- 15. Roudko V, Bozkus CC, Orfanelli T, et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell, 2020, 183(6): 1634-1649.e17.
- 16. Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol, 2017, 18(8): 1009-1021.
- 17. Lou Y, Asmann Y, Thomas M, et al. MA 05.01 integrating INDEL mutations into neoantigen prediction in lung cancer: developing personalized cancer vaccines. Mini Oral Abstract Sessions, 2017, 12(11 Suppl 2): S1814-S1815.
- 18. Mertens F, Johansson B, Fioretos T, et al. The emerging complexity of gene fusions in cancer. Nat Rev Cancer, 2015, 15(6): 371-381.
- 19. Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature, 1985, 315(6020): 550-554.
- 20. Sato Y, Nabeta Y, Tsukahara T, et al. Detection and induction of CTLs specific for SYT-SSX-derived peptides in HLA-A24(+) patients with synovial sarcoma. J Immunol, 2002, 169(3): 1611-1618.
- 21. Kalina JL, Neilson DS, Lin YY, et al. Mutational analysis of gene fusions predicts novel MHC class Ⅰ-restricted T-cell epitopes and immune signatures in a subset of prostate cancer. Clin Cancer Res, 2017, 23(24): 7596-7607.
- 22. Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med, 2019, 25(5): 767-775.
- 23. Zamora AE, Crawford JC, Allen EK, et al. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses. Sci Transl Med, 2019, 11(498): eaat8549. doi: 10.1126/scitranslmed.aat8549.
- 24. Wei Z, Zhou C, Zhang Z, et al. The landscape of tumor fusion neoantigens: A pan-cancer analysis. iScience, 2019, 21: 249-260.
- 25. Dai X, Theobard R, Cheng H, et al. Fusion genes: A promising tool combating against cancer. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 149-160.
- 26. Jayasinghe RG, Cao S, Gao Q, et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep, 2018, 23(1): 270-281.e3.
- 27. Smart AC, Margolis CA, Pimentel H, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol, 2018, 36(11): 1056-1058.
- 28. Jung H, Lee D, Lee J, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet, 2015, 47(11): 1242-1248.
- 29. Dvinge H, Bradley RK. Widespread intron retention diversifies most cancer transcriptomes. Genome Med, 2015, 7(1): 45. doi: 10.1186/s13073-015-0168-9.
- 30. Kahles A, Lehmann KV, Toussaint NC, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell, 2018, 34(2): 211-224.e6.
- 31. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res, 2012, 72(19): 4875-4882.
- 32. Chen F, Zou Z, Du J, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest, 2019, 129(5): 2056-2070.
- 33. Bhagwate AV, Liu Y, Winham SJ, et al. Bioinformatics and DNA-extraction strategies to reliably detect genetic variants from FFPE breast tissue samples. BMC Genomics, 2019, 20(1): 689. doi: 10.1186/s12864-019-6056-8.
- 34. de Schaetzen van Brienen L, Larmuseau M, Van der Eecken K, et al. Comparative analysis of somatic variant calling on matched FF and FFPE WGS samples. BMC Med Genomics, 2020, 13(1): 94. doi: 10.1186/s12920-020-00746-5.
- 35. Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput Struct Biotechnol J, 2018, 16: 15-24.
- 36. Hwang S, Kim E, Lee I, et al. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep, 2015, 5: 17875. doi: 10.1038/srep17875.
- 37. Karasaki T, Nagayama K, Kuwano H, et al. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci, 2017, 108(2): 170-177.
- 38. Rathe SK, Popescu FE, Johnson JE, et al. Identification of candidate neoantigens produced by fusion transcripts in human osteosarcomas. Sci Rep, 2019, 9(1): 358. doi: 10.1038/s41598-018-36840-z.
- 39. Benjamin D, Sato T, Cibulskis K, et al. Calling somatic SNVs and indels with Mutect2. 2019: 861054. https://www.biorxiv.org/content/10.1101/v1.abstract.
- 40. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 2013, 31(3): 213-219.
- 41. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods, 2018, 15(8): 591-594.
- 42. Saunders CT, Wong WS, Swamy S, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics, 2012, 28(14): 1811-1817.
- 43. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res, 2012, 22(3): 568-576.
- 44. Larson DE, Harris CC, Chen K, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics, 2012, 28(3): 311-317.
- 45. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793): 82-93.
- 46. Richters MM, Xia H, Campbell KM, et al. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med, 2019, 11(1): 56. doi: 10.1186/s13073-019-0666-2.
- 47. De Mattos-Arruda L, Vazquez M, Finotello F, et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol, 2020, 31(8): 978-990.
- 48. Robinson J, Barker DJ, Georgiou X, et al. IPD-IMGT/HLA database. Nucleic Acids Res, 2020, 48(D1): D948-D955.
- 49. González-Galarza FF, Takeshita LY, Santos EJ, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res, 2015, 43(Database issue): D784-D788.
- 50. Zhao W, Sher X. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. PLoS Comput Biol, 2018, 14(11): e1006457. doi: 10.1371/journal.pcbi.1006457.
- 51. Paul S, Croft NP, Purcell AW, et al. Benchmarking predictions of MHC class Ⅰ restricted T cell epitopes in a comprehensively studied model system. PLoS Comput Biol, 2020, 16(5): e1007757. doi: 10.1371/journal.pcbi.1007757.
- 52. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class Ⅰ system. Bioinformatics, 2016, 32(4): 511-517.
- 53. Jurtz V, Paul S, Andreatta M, et al. NetMHCpan-4.0: Improved peptide-MHC class Ⅰ interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017, 199(9): 3360-3368.
- 54. Liu G, Li D, Li Z, et al. PSSMHCpan: a novel PSSM-based software for predicting class Ⅰ peptide-HLA binding affinity. Gigascience, 2017, 6(5): 1-11.
- 55. Pabinger S, Dander A, Fischer M, et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform, 2014, 15(2): 256-278.
- 56. Wells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell, 2020, 183(3): 818-834.e13.
- 57. Blaha DT, Anderson SD, Yoakum DM, et al. High-throughput stability screening of neoantigen/HLA complexes improves immunogenicity predictions. Cancer Immunol Res, 2019, 7(1): 50-61.
- 58. Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 1998, 393(6684): 480-483.
- 59. Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, 2022, 21(4): 261-282.
- 60. Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class Ⅱ epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520(7549): 692-696.
- 61. Andreatta M, Karosiene E, Rasmussen M, et al. Accurate pan-specific prediction of peptide-MHC class Ⅱ binding affinity with improved binding core identification. Immunogenetics, 2015, 67(11-12): 641-650.
- 62. Abelin JG, Harjanto D, Malloy M, et al. Defining HLA-Ⅱ ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity, 2021, 54(2): 388. doi: 10.1016/j.immuni.2020.12.005.
- 63. Racle J, Michaux J, Rockinger GA, et al. Robust prediction of HLA class Ⅱ epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol, 2019, 37(11): 1283-1286.
- 64. Chen B, Khodadoust MS, Olsson N, et al. Predicting HLA class Ⅱ antigen presentation through integrated deep learning. Nat Biotechnol, 2019, 37(11): 1332-1343.
- 65. Reynisson B, Barra C, Kaabinejadian S, et al. Improved prediction of MHC Ⅱ antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res, 2020, 19(6): 2304-2315.
- 66. Bijker MS, van den Eeden SJ, Franken KL, et al. CD8+ CTL priming by exact peptide epitopes in incomplete Freun’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol, 2007, 179(8): 5033-5040.
- 67. Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines. Nat Rev Cancer, 2021, 21(6): 360-378.
- 68. Rock KL, Reits E, Neefjes J. Present yourself! By MHC class Ⅰ and MHC class Ⅱ molecules. Trends Immunol, 2016, 37(11): 724-737.
- 69. Ma W, Stroobant V, Heirman C, et al. The vacuolar pathway of long peptide cross-presentation can be TAP dependent. J Immunol, 2019, 202(2): 451-459.
- 70. Ménager J, Ebstein F, Oger R, et al. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014, 9(2): e89897. doi: 10.1371/journal.pone.0089897.
- 71. Hambach L, Aghai Z, Pool J, et al. Peptide length extension skews the minor HA-1 antigen presentation toward activated dendritic cells but reduces its presentation efficiency. J Immunol, 2010, 185(8): 4582-4589.
- 72. Perez SA, von Hofe E, Kallinteris NL, et al. A new era in anticancer peptide vaccines. Cancer, 2010, 116(9): 2071-2080.
- 73. van der Burg SH, Bijker MS, Welters MJ, et al. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev, 2006, 58(8): 916-930.
- 74. Fritah H, Rovelli R, Chiang CL, et al. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev, 2022, 106: 102383. doi: 10.1016/j.ctrv.2022.102383.
- 75. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines, 2016, 15(3): 313-329.
- 76. Duperret EK, Perales-Puchalt A, Stoltz R, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class Ⅰ CD8+ T-cell responses, impacting tumor challenge. Cancer Immunol Res, 2019, 7(2): 174-182.
- 77. Yang X, Fan J, Wu Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. Nanomedicine, 2021, 37: 102443. doi: 10.1016/j.nano.2021.102443.
- 78. Aurisicchio L, Salvatori E, Lione L, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019, 38(1): 78. doi: 10.1186/s13046-019-1084-4.
- 79. Perales R, Yarchoan M, Cooch N, et al. Personalized neoantigen DNA vaccines expand tumor-specific T cells in the periphery which infiltrate the tumor in hepatocellular carcinoma. J Clin Oncol, 2022, 40(16_suppl): 2638. doi: 10.1200/JCO.2022.40.16_suppl.2638.
- 80. Vormehr M, Türeci Ö, Sahin U. Harnessing tumor mutations for truly individualized cancer vaccines. Annu Rev Med, 2019, 70: 395-407.
- 81. Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534(7607): 396-401.
- 82. Beck JD, Reidenbach D, Salomon N, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer, 2021, 20(1): 69. doi: 10.1186/s12943-021-01348-0.
- 83. Cafri G, Gartner JJ, Zaks T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest, 2020, 130(11): 5976-5988.
- 84. Esprit A, de Mey W, Bahadur Shahi R, et al. Neo-antigen mRNA vaccines. Vaccines (Basel), 2020, 8(4): 776. doi: 10.3390/vaccines8040776.
- 85. Zhao X, Pan X, Wang Y, et al. Targeting neoantigens for cancer immunotherapy. Biomark Res, 2021, 9(1): 61. doi: 10.1186/s40364-021-00315-7.
- 86. Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol, 2020, 13(1): 107. doi: 10.1186/s13045-020-00939-6.
- 87. Harari A, Graciotti M, Bassani-Sternberg M, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov, 2020, 19(9): 635-652.
- 88. Carreno BM, Magrini V, Becker-Hapak M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015, 348(6236): 803-808.
- 89. Ott PA, Hu-Lieskovan S, Chmielowski B, et al. A phase Ⅰb trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 2020, 183(2): 347-362.e24.
- 90. Ding Z, Li Q, Zhang R, et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther, 2021, 6(1): 26. doi: 10.1038/s41392-020-00448-5.
- 91. Balan S, Radford KJ, Bhardwaj N. Unexplored horizons of cDC1 in immunity and tolerance. Adv Immunol, 2020, 148: 49-91.
- 92. Balan S, Arnold-Schrauf C, Abbas A, et al. Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell Rep, 2018, 24(7): 1902-1915.e6.
- 93. Lim S, Park J, Shim MK, et al. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9(25): 7906-7923.
- 94. Irvine DJ, Hanson MC, Rakhra K, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev, 2015, 115(19): 11109-11146.
- 95. Liu H, Moynihan KD, Zheng Y, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507(7493): 519-522.
- 96. Luo M, Wang H, Wang Z, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol, 2017, 12(7): 648-654.
- 97. Ni Q, Zhang F, Liu Y, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv, 2020, 6(12): eaaw6071. doi: 10.1126/sciadv.aaw6071.
- 98. Wang Y, Zhao Q, Zhao B, et al. Remodeling tumor-associated neutrophils to enhance dendritic cell-based HCC neoantigen nano-vaccine efficiency. Adv Sci (Weinh), 2022, 9(11): e2105631. doi: 10.1002/advs.202105631.
- 99. Baharom F, Ramirez-Valdez RA, Tobin KKS, et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat Immunol, 2021, 22(1): 41-52.
- 100. Arbelaez CA, Estrada J, Gessner MA, et al. A nanoparticle vaccine that targets neoantigen peptides to lymphoid tissues elicits robust antitumor T cell responses. NPJ Vaccines, 2020, 5(1): 106. doi: 10.1038/s41541-020-00253-9.
- 101. Yu X, Dai Y, Zhao Y, et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun, 2020, 11(1): 1110. doi: 10.1038/s41467-020-14906-9.
- 102. Kuai R, Ochyl LJ, Bahjat KS, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater, 2017, 16(4): 489-496.
- 103. Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov, 2015, 5(11): 1164-1177.
- 104. Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection. Cell, 2018, 175(3): 751-765.e16.
- 105. Jiménez-Sánchez A, Memon D, Pourpe S, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell, 2017, 170(5): 927-938.e20.
- 106. Leong TL, Gayevskiy V, Steinfort DP, et al. Deep multi-region whole-genome sequencing reveals heterogeneity and gene-by-environment interactions in treatment-naive, metastatic lung cancer. Oncogene, 2019, 38(10): 1661-1675.
- 107. Jiang J, Natarajan K, Boyd LF, et al. Crystal structure of a TAPBPR-MHC Ⅰ complex reveals the mechanism of peptide editing in antigen presentation. Science, 2017, 358(6366): 1064-1068.
- 108. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res, 2020, 99(7): 769-774.
- 109. Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528): 577-581.
- 110. Simoni Y, Becht E, Fehlings M, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature, 2018, 557(7706): 575-579.
- 111. Fehlings M, Simoni Y, Penny HL, et al. Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8+ T cells. Nat Commun, 2017, 8(1): 562. doi: 10.1038/s41467-017-00627-z.
- 112. Gubin MM, Esaulova E, Ward JP, et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell, 2018, 175(4): 1014-1030.e19.
- 113. Slota M, Lim JB, Dang Y, et al. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines, 2011, 10(3): 299-306.
- 114. Lehmann PV, Zhang W. Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol, 2012, 792: 3-23.
- 115. van der Burg SH, Kalos M, Gouttefangeas C, et al. Harmonization of immune biomarker assays for clinical studies. Sci Transl Med, 2011, 3(108. doi: 108ps44): 108ps44.
- 116. Silverman E. Can we afford the war on cancer? Biotechnol Healthc, 2012, 9(4): 13-16.
- 117. Fang W, Jin H, Zhou H, et al. Intratumoral heterogeneity as a predictive biomarker in anti-PD-(L)1 therapies for non-small cell lung cancer. Mol Cancer, 2021, 20(1): 37. doi: 10.1186/s12943-021-01331-9.
- 118. Knuschke T, Kollenda S, Wenzek C, et al. A combination of anti-PD-L1 treatment and therapeutic vaccination facilitates improved retroviral clearance via reactivation of highly exhausted T cells. mBio, 2021, 12(1): e02121-2120.
- 119. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol, 2013, 4: 114.
- 120. Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med, 2013, 19(4): 465-472.
- 121. Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med, 1994, 180(4): 1263-1272.
- 122. van Kooten C, Banchereau J. Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol, 1997, 9(3): 330-337.
- 123. Hoffmann TK, Meidenbauer N, Müller-Berghaus J, et al. Proinflammatory cytokines and CD40 ligand enhance cross-presentation and cross-priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother, 2001, 24(2): 162-171.
- 124. van Mierlo GJ, Boonman ZF, Dumortier HM, et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol, 2004, 173(11): 6753-6759.
- 125. Yin W, Gorvel L, Zurawski S, et al. Functional specialty of CD40 and dendritic cell surface lectins for exogenous antigen presentation to CD8(+) and CD4(+) T cells. EBioMedicine, 2016, 5: 46-58.
- 126. Sonpavde G, McMannis JD, Bai Y, et al. Phase Ⅰ trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunol Immunother, 2017, 66(10): 1345-1357.
- 127. Zhang R, Tang L, Tian Y, et al. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on neoantigens. Biomaterials, 2020, 241: 119852. doi: 10.1016/j.biomaterials.2020.119852.
- 128. Schumacher T, Bunse L, Pusch S, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512(7514): 324-327.
- 129. Bunse L, Schumacher T, Sahm F, et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest, 2015, 125(2): 593-606.
- 130. Melief CJ. Mutation-specific T cells for immunotherapy of gliomas. N Engl J Med, 2015, 372(20): 1956-1958.
- 131. Pellegatta S, Valletta L, Corbetta C, et al. Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun, 2015, 3: 4. doi: 10.1186/s40478-014-0180-0.
- 132. Bunse L, Pusch S, Bunse T, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med, 2018, 24(8): 1192-1203.
- 133. Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature, 2021, 592(7854): 463-468.
- 134. Malekzadeh P, Pasetto A, Robbins PF, et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest, 2019, 129(3): 1109-1114.
- 135. Wang C, Shi M, Zhang L, et al. Identification of KRAS G12V associated clonal neoantigens and immune microenvironment in long-term survival of pancreatic adenocarcinoma. Cancer Immunol Immunother, 2022, 71(2): 491-504.
- 136. Hsiue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutation. Science, 2021, 371(6533): eabc8697. doi: 10.1126/science.abc8697.
- 137. Chandran SS, Ma J, Klatt MG, et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat Med, 2022, 28(5): 946-957.