• 1. Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
  • 2. West China School of Medicine in Sichuan University, Chengdu 610041, P. R. China;
  • 3. School of Computer Science, Sichuan University, Chengdu 610065, P. R. China;
  • 4. Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
WANG Xiaodong, Email: lockwan@163.com
Export PDF Favorites Scan Get Citation

Objective To explore the value of a decision tree (DT) model based on CT for predicting pathological complete response (pCR) after neoadjuvant chemotherapy therapy (NACT) in patients with locally advanced rectal cancer (LARC).Methods The clinical data and DICOM images of CT examination of 244 patients who underwent radical surgery after the NACT from October 2016 to March 2019 in the Database from Colorectal Cancer (DACCA) in the West China Hospital were retrospectively analyzed. The ITK-SNAP software was used to select the largest level of tumor and sketch the region of interest. By using a random allocation software, 200 patients were allocated into the training set and 44 patients were allocated into the test set. The MATLAB software was used to read the CT images in DICOM format and extract and select radiomics features. Then these reduced-dimensions features were used to construct the prediction model. Finally, the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), sensitivity, and specificity values were used to evaluate the prediction model.Results According to the postoperative pathological tumor regression grade (TRG) classification, there were 28 cases in the pCR group (TRG0) and 216 cases in the non-pCR group (TRG1–TRG3). The outcomes of patients with LARC after NACT were highly correlated with 13 radiomics features based on CT (6 grayscale features: mean, variance, deviation, skewness, kurtosis, energy; 3 texture features: contrast, correlation, homogeneity; 4 shape features: perimeter, diameter, area, shape). The AUC value of DT model based on CT was 0.772 [95% CI (0.656, 0.888)] for predicting pCR after the NACT in the patients with LARC. The accuracy of prediction was higher for the non-PCR patients (97.2%), but lower for the pCR patients (57.1%).Conclusions In this preliminary study, the DT model based on CT shows a lower prediction efficiency in judging pCR patient with LARC before operation as compared with homogeneity researches, so a more accurate prediction model of pCR patient will be optimized through advancing algorithm, expanding data set, and digging up more radiomics features.

Citation: LI Qian, ZHOU Yifei, LI Zhengyan, WANG Xiaodong, GAO Shaobing, LI Li. Preliminary study on prediction model based on CT for pathological complete response of rectal cancer after neoadjuvant chemotherapy. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2020, 27(5): 606-611. doi: 10.7507/1007-9424.202003073 Copy

Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved

  • Previous Article

    MDT discussion of comprehensive downstaging treatment for 2 cases of liver cancer
  • Next Article

    单孔腹腔镜下注射针头协助弧形弯钩的小儿腹股沟疝结扎术 180 例临床分析