- Department of Thyroid Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, R. P. China;
Citation: ZHOU Yu, CHENG Ruochuan. Advances in the study of prognostic factors for papillary thyroid carcinoma. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2020, 27(8): 1028-1032. doi: 10.7507/1007-9424.201912096 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Lai X, Xia Y, Zhang B et al. A meta-analysis of Hashimoto's thyroiditis and papillary thyroid carcinoma risk. Oncotarget, 2017, 8(37): 62414-62424. |
2. | 田文, 郗洪庆. 甲状腺癌病人生存现状分析. 中国实用外科杂志, 2016, 36(5): 489-493. |
3. | Song E, Jeon MJ, Park S, et al. Influence of coexistent Hashimoto's thyroiditis on the extent of cervical lymph node dissection and prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf), 2018, 88(1): 123-128. |
4. | Kwak HY, Chae BJ, Eom YH, et al. Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto thyroiditis? Int J Clin Oncol, 2015, 20(3): 463-473. |
5. | Ito Y, Higashiyama T, Takamura Y, et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg, 2007, 31(11): 2085-2091. |
6. | Podnos YD, Smith D, Wagman LD, et al. The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer. Am Surg, 2005, 71(9): 731-734. |
7. | Sun Y, Dai W, Liang Y, et al. Impact of age on the prognosis of papillary thyroid carcinoma. Arch Iran Med, 2020, 23(3): 169-174. |
8. | 孙威, 贺亮, 张浩. 美国癌症联合委员会甲状腺癌分期系统(第 8 版)更新解读. 中国实用外科杂志, 2017, 37(3): 255-258. |
9. | Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med, 1994, 97(5): 418-428. |
10. | Kwon H, Han KD, Park CY. Weight change is significantly associated with risk of thyroid cancer: A nationwide population-based cohort study. Sci Rep, 2019, 9(1): 1546. |
11. | Xu L, Port M, Landi S, et al. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies. Thyroid, 2014, 24(6): 966-974. |
12. | Wu CH, Wang L, Chen WJ, et al. Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: A retrospective study. Medicine (Baltimore), 2017, 96(9): e6202. |
13. | Yu ST, Chen W, Cai Q, et al. Pretreatment BMI is associated with aggressive clinicopathological features of papillary thyroid carcinoma: a multicenter study. Int J Endocrinol, 2017, 2017: 5841942. |
14. | Trésallet C, Seman M, Tissier F, et al. The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indices. Surgery, 2014, 156(5): 1145-1152. |
15. | Gąsior-Perczak D, Pałyga I, Szymonek M, et al. The impact of BMI on clinical progress, response to treatment, and disease course in patients with differentiated thyroid cancer. PLoS ONE, 2018, 13(10): e0204668. |
16. | Feng JW, Yang XH, Wu BQ, et al. Influence of body mass index on the clinicopathologic features of papillary thyroid carcinoma. Ann Otol Rhinol Laryngol, 2019, 128(7): 625-632. |
17. | Sarquis M, Moraes DC, Bastos-Rodrigues L, et al. Germline mutations in familial papillary thyroid cancer. Endocr Pathol, 2020, 31(1): 14-20. |
18. | Vidinov K, Nikolova D. Familial papillary thyroid carcinoma (FPTC): a retrospective analysis in a sample of the bulgarian popu-lation for a 10-year period. Endocrine Pathology, 2017, 28(1): 54-59. |
19. | Bonora E, Tallini G, Romeo G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol, 2010, 2010: 385206. |
20. | Jauculan MC, Buenaluz-Sedurante M, Jimeno CA. Risk factors associated with disease recurrence among patients with low-risk papillary thyroid cancer treated at the University of the Philippines-Philippine General Hospital. Endocrinol Metab (Seoul), 2016, 31(1): 113-119. |
21. | Cao J, Chen C, Chen C, et al. Clinicopathological features and prognosis of familial papillary thyroid carcinoma—a large-scale, matched, case-control study. Clin Endocrinol (Oxf), 2016, 84(4): 598-606. |
22. | Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1): 1-133. |
23. | 兰雨, 宋青, 金壮, 等. 常规超声特征及 BRAFV600E 基因突变与甲状腺乳头状癌颈部淋巴结转移的相关性. 解放军医学杂志, 2019, 44(9): 747-752. |
24. | 于波洋, 周洁宏, 马步云, 等. 甲状腺乳头状癌术前超声及临床病理特征与侵袭性的相关性. 临床与实验病理学杂志, 2019, 35(5): 543-547. |
25. | Ryu YJ, Kang SJ, Cho JS, et al. Identifying risk factors of lateral lymph node recurrence in clinically node-negative papillary thyroid cancer. Medicine (Baltimore), 2018, 97(51): e13435. |
26. | Moreno MA, Edeiken-Monroe BS, Siegel ER, et al. In papillary thyroid cancer, preoperative central neck ultrasound detects only macroscopic surgical disease, but negative findings predict excellent long-term regional control and survival. Thyroid, 2012, 22(4): 347-355. |
27. | Silver CE, Owen RP, Rodrigo JP, et al. Aggressive variants of papillary thyroid carcinoma. Head Neck, 2011, 33(7): 1052-1059. |
28. | Morris LG, Shaha AR, Tuttle RM, et al. Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival. Thyroid, 2010, 20(2): 153-158. |
29. | Shi XG, Liu RY, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab, 2016, 101(1): 264-274. |
30. | Xu B, Tuttle RM, Sabra MM, et al. Primary thyroid carcinoma with low-risk histology and distant metastases: clinicopathologic and molecular characteristics. Thyroid, 2017, 27(5): 632-640. |
31. | Paulson LM, Shindo ML, Schuff KG. Role of chronic lymphocytic thyroiditis in central node metastasis of papillary thyroid carcinoma. Otolaryngol Head Neck Surg, 2012, 147(3): 444-449. |
32. | Zhu F, Shen YB, Li FQ, et al. The effects of hashimoto thyroiditis on lymph node metastases in unifocal and multifocal papillary thyroid carcinoma: a retrospective chinese cohort study. Medicine (Baltimore), 2016, 95(6): e2674. |
33. | Borowczyk M, Janicki A, Dworacki G, et al. Decreased staging of differentiated thyroid cancer in patients with chronic lymphocytic thyroiditis. J Endocrinol Invest, 2019, 42(1): 45-52. |
34. | Kim SS, Lee BJ, Lee JC, et al. Coexistence of Hashimoto's thyroiditis with papillary thyroid carcinoma: the influence of lymph node metastasis. Head Neck, 2011, 33(9): 1272-1277. |
35. | Nam-Goong IS, Kim HY, Gong G, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf), 2004, 60(1): 21-28. |
36. | Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid, 2003, 13(4): 381-387. |
37. | Tavarelli M, Sarfati J, Chereau N, et al. Heterogeneous prognoses for pt3 papillary thyroid carcinomas and impact of delayed risk stratification. Thyroid, 2017, 27(6): 778-786. |
38. | 梁澄照, 黄进林, 袁晟. 颈侧淋巴结(N1b)转移与甲状腺乳头状癌预后的相关性分析. 河北医药, 2019, 41(4): 528-531. |
39. | Baek SK, Jung KY, Kang SM, et al. Clinical risk factors associated with cervical lymph node recurrence in papillary thyroid carcinoma. Thyroid, 2010, 20(2): 147-152. |
40. | Nam SH, Roh JL, Gong G, et al. Nodal factors predictive of recurrence after thyroidectomy and neck dissection for papillary thyroid carcinoma. Thyroid, 2018, 28(1): 88-95. |
41. | Ciampi R, Romei C, Pieruzzi L, et al. Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J Endocrinol Invest, 2017, 40(1): 55-62. |
42. | Falchook GS, Millward M, Hong D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid, 2015, 25(1): 71-77. |
43. | 王成晨, 向大鹏, 李志宇. 甲状腺乳头状癌相关基因突变与其临床病理特征的关系. 实用肿瘤杂志, 2019, 34(3): 239-244. |
44. | Moon S, Song YS, Kim YA, et al. Effects of coexistent braf and tert promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid, 2017, 27(5): 651-660. |
45. | Xing M, Liu R, Liu X, et al. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol, 2014, 32(25): 2718-2726. |
46. | Moulana FI, Priyani AAH, de Silva MVC, et al. BRAF-oncogene-induced senescence and the role of thyroid-stimulating hormone signaling in the progression of papillary thyroid carcinoma. Horm Cancer, 2018, 9(1): 1-11. |
47. | Chen YF, Sadow PM, Suh H, et al. BRAFV600E is correlated with recurrence of papillary thyroid microcarcinoma: a systematic review, multi-institutional primary data analysis, and meta-analysis. Thyroid, 2016, 26(2): 248-255. |
48. | Tallini G, de BD, Durante C, et al. BRAFV600E and risk stratification of thyroid microcarcinoma: a multicenter pathological and clinical study. Mod Pathol, 2015, 28(10): 1343-1359. |
49. | Wang Z, Chen JQ, Liu JL, et al. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest, 2016, 46(2): 146-157. |
50. | Ricarte-Filho J, Ganly I, Rivera M, et al. Papillary thyroid carcinomas with cervical lymph node metastases can be stratified into clinically relevant prognostic categories using oncogenic BRAF, the number of nodal metastases, and extra-nodal extension. Thyroid, 2012, 22(6): 575-584. |
51. | Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer, 2013, 20(4): 603-610. |
52. | Lee SE, Hwang TS, Choi YL, et al. Prognostic significance of tert promoter mutations in papillary thyroid carcinomas in a BRAFV600E mutation-prevalent population. Thyroid, 2016, 26(7): 901-910. |
53. | Tan J, Qian X, Song B, et al. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep, 2018, 40(1): 111-122. |
54. | Wu Y, Han J, Vladimirovna KE, et al. Upregulation of protein tyrosine phosphatase receptor type c associates to the combination of hashimoto's thyroiditis and papillary thyroid carcinoma and is predictive of a poor prognosis. Onco Targets Ther, 2019, 12: 8479-8489. |
55. | Lamartina L, Montesano T, Trulli F, et al. Papillary thyroid carcinomas with biochemical incomplete or indeterminate res-ponses to initial treatment: repeat stimulated thyroglobulin assay to identify disease-free patients. Endocrine, 2016, 54(2): 467-475. |
56. | Yim JH, Kim WB, Kim EY, et al. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J Clin Endocrinol Metab, 2011, 96(7): 2049-2056. |
57. | Dvorkin S, Robenshtok E, Hirsch D, et al. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimotos thyroiditis. J Clin Endocrinol Metab, 2013, 98(6): 2409-2414. |
58. | Wassner AJ, Della VM, Jarolim P, et al. Prevalence and significance of thyroglobulin antibodies in pediatric thyroid cancer. J Clin Endocrinol Metab, 2017, 102(9): 3146-3153. |
59. | Durante C, Tognini S, Montesano T, et al. Clinical aggressiveness and long-term outcome in patients with papillary thyroid cancer and circulating anti-thyroglobulin autoantibodies. Thyroid, 2014, 24(7): 1139-1145. |
60. | Morbelli S, Ferrarazzo G, Pomposelli E, et al. Relationship between circulating anti-thyroglobulin antibodies (TgAb) and tumor metabolism in patients with differentiated thyroid cancer (DTC): prognostic implications. J Endocrinol Invest, 2017, 40(4): 417-424. |
61. | 程若川, 刘文. 中国甲状腺癌术后随访和临床研究现状反思. 中国普通外科杂志, 2017, 26(11): 1375-1382. |
62. | Grani G, Ramundo V, Falcone R, et al. Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. Clin Endocrinol Metab, 2019, 104(11): 4981-4989. |
63. | Durante C, Montesano T, Torlontano M, et al. Papillary thyroid cancer: time course of recurrences during postsurgery surveillance. J Clin Endocrinol Metab, 2013, 98(2): 636-642. |
- 1. Lai X, Xia Y, Zhang B et al. A meta-analysis of Hashimoto's thyroiditis and papillary thyroid carcinoma risk. Oncotarget, 2017, 8(37): 62414-62424.
- 2. 田文, 郗洪庆. 甲状腺癌病人生存现状分析. 中国实用外科杂志, 2016, 36(5): 489-493.
- 3. Song E, Jeon MJ, Park S, et al. Influence of coexistent Hashimoto's thyroiditis on the extent of cervical lymph node dissection and prognosis in papillary thyroid carcinoma. Clin Endocrinol (Oxf), 2018, 88(1): 123-128.
- 4. Kwak HY, Chae BJ, Eom YH, et al. Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto thyroiditis? Int J Clin Oncol, 2015, 20(3): 463-473.
- 5. Ito Y, Higashiyama T, Takamura Y, et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg, 2007, 31(11): 2085-2091.
- 6. Podnos YD, Smith D, Wagman LD, et al. The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer. Am Surg, 2005, 71(9): 731-734.
- 7. Sun Y, Dai W, Liang Y, et al. Impact of age on the prognosis of papillary thyroid carcinoma. Arch Iran Med, 2020, 23(3): 169-174.
- 8. 孙威, 贺亮, 张浩. 美国癌症联合委员会甲状腺癌分期系统(第 8 版)更新解读. 中国实用外科杂志, 2017, 37(3): 255-258.
- 9. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med, 1994, 97(5): 418-428.
- 10. Kwon H, Han KD, Park CY. Weight change is significantly associated with risk of thyroid cancer: A nationwide population-based cohort study. Sci Rep, 2019, 9(1): 1546.
- 11. Xu L, Port M, Landi S, et al. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies. Thyroid, 2014, 24(6): 966-974.
- 12. Wu CH, Wang L, Chen WJ, et al. Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: A retrospective study. Medicine (Baltimore), 2017, 96(9): e6202.
- 13. Yu ST, Chen W, Cai Q, et al. Pretreatment BMI is associated with aggressive clinicopathological features of papillary thyroid carcinoma: a multicenter study. Int J Endocrinol, 2017, 2017: 5841942.
- 14. Trésallet C, Seman M, Tissier F, et al. The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indices. Surgery, 2014, 156(5): 1145-1152.
- 15. Gąsior-Perczak D, Pałyga I, Szymonek M, et al. The impact of BMI on clinical progress, response to treatment, and disease course in patients with differentiated thyroid cancer. PLoS ONE, 2018, 13(10): e0204668.
- 16. Feng JW, Yang XH, Wu BQ, et al. Influence of body mass index on the clinicopathologic features of papillary thyroid carcinoma. Ann Otol Rhinol Laryngol, 2019, 128(7): 625-632.
- 17. Sarquis M, Moraes DC, Bastos-Rodrigues L, et al. Germline mutations in familial papillary thyroid cancer. Endocr Pathol, 2020, 31(1): 14-20.
- 18. Vidinov K, Nikolova D. Familial papillary thyroid carcinoma (FPTC): a retrospective analysis in a sample of the bulgarian popu-lation for a 10-year period. Endocrine Pathology, 2017, 28(1): 54-59.
- 19. Bonora E, Tallini G, Romeo G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol, 2010, 2010: 385206.
- 20. Jauculan MC, Buenaluz-Sedurante M, Jimeno CA. Risk factors associated with disease recurrence among patients with low-risk papillary thyroid cancer treated at the University of the Philippines-Philippine General Hospital. Endocrinol Metab (Seoul), 2016, 31(1): 113-119.
- 21. Cao J, Chen C, Chen C, et al. Clinicopathological features and prognosis of familial papillary thyroid carcinoma—a large-scale, matched, case-control study. Clin Endocrinol (Oxf), 2016, 84(4): 598-606.
- 22. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1): 1-133.
- 23. 兰雨, 宋青, 金壮, 等. 常规超声特征及 BRAFV600E 基因突变与甲状腺乳头状癌颈部淋巴结转移的相关性. 解放军医学杂志, 2019, 44(9): 747-752.
- 24. 于波洋, 周洁宏, 马步云, 等. 甲状腺乳头状癌术前超声及临床病理特征与侵袭性的相关性. 临床与实验病理学杂志, 2019, 35(5): 543-547.
- 25. Ryu YJ, Kang SJ, Cho JS, et al. Identifying risk factors of lateral lymph node recurrence in clinically node-negative papillary thyroid cancer. Medicine (Baltimore), 2018, 97(51): e13435.
- 26. Moreno MA, Edeiken-Monroe BS, Siegel ER, et al. In papillary thyroid cancer, preoperative central neck ultrasound detects only macroscopic surgical disease, but negative findings predict excellent long-term regional control and survival. Thyroid, 2012, 22(4): 347-355.
- 27. Silver CE, Owen RP, Rodrigo JP, et al. Aggressive variants of papillary thyroid carcinoma. Head Neck, 2011, 33(7): 1052-1059.
- 28. Morris LG, Shaha AR, Tuttle RM, et al. Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival. Thyroid, 2010, 20(2): 153-158.
- 29. Shi XG, Liu RY, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab, 2016, 101(1): 264-274.
- 30. Xu B, Tuttle RM, Sabra MM, et al. Primary thyroid carcinoma with low-risk histology and distant metastases: clinicopathologic and molecular characteristics. Thyroid, 2017, 27(5): 632-640.
- 31. Paulson LM, Shindo ML, Schuff KG. Role of chronic lymphocytic thyroiditis in central node metastasis of papillary thyroid carcinoma. Otolaryngol Head Neck Surg, 2012, 147(3): 444-449.
- 32. Zhu F, Shen YB, Li FQ, et al. The effects of hashimoto thyroiditis on lymph node metastases in unifocal and multifocal papillary thyroid carcinoma: a retrospective chinese cohort study. Medicine (Baltimore), 2016, 95(6): e2674.
- 33. Borowczyk M, Janicki A, Dworacki G, et al. Decreased staging of differentiated thyroid cancer in patients with chronic lymphocytic thyroiditis. J Endocrinol Invest, 2019, 42(1): 45-52.
- 34. Kim SS, Lee BJ, Lee JC, et al. Coexistence of Hashimoto's thyroiditis with papillary thyroid carcinoma: the influence of lymph node metastasis. Head Neck, 2011, 33(9): 1272-1277.
- 35. Nam-Goong IS, Kim HY, Gong G, et al. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf), 2004, 60(1): 21-28.
- 36. Ito Y, Uruno T, Nakano K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid, 2003, 13(4): 381-387.
- 37. Tavarelli M, Sarfati J, Chereau N, et al. Heterogeneous prognoses for pt3 papillary thyroid carcinomas and impact of delayed risk stratification. Thyroid, 2017, 27(6): 778-786.
- 38. 梁澄照, 黄进林, 袁晟. 颈侧淋巴结(N1b)转移与甲状腺乳头状癌预后的相关性分析. 河北医药, 2019, 41(4): 528-531.
- 39. Baek SK, Jung KY, Kang SM, et al. Clinical risk factors associated with cervical lymph node recurrence in papillary thyroid carcinoma. Thyroid, 2010, 20(2): 147-152.
- 40. Nam SH, Roh JL, Gong G, et al. Nodal factors predictive of recurrence after thyroidectomy and neck dissection for papillary thyroid carcinoma. Thyroid, 2018, 28(1): 88-95.
- 41. Ciampi R, Romei C, Pieruzzi L, et al. Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J Endocrinol Invest, 2017, 40(1): 55-62.
- 42. Falchook GS, Millward M, Hong D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid, 2015, 25(1): 71-77.
- 43. 王成晨, 向大鹏, 李志宇. 甲状腺乳头状癌相关基因突变与其临床病理特征的关系. 实用肿瘤杂志, 2019, 34(3): 239-244.
- 44. Moon S, Song YS, Kim YA, et al. Effects of coexistent braf and tert promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid, 2017, 27(5): 651-660.
- 45. Xing M, Liu R, Liu X, et al. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol, 2014, 32(25): 2718-2726.
- 46. Moulana FI, Priyani AAH, de Silva MVC, et al. BRAF-oncogene-induced senescence and the role of thyroid-stimulating hormone signaling in the progression of papillary thyroid carcinoma. Horm Cancer, 2018, 9(1): 1-11.
- 47. Chen YF, Sadow PM, Suh H, et al. BRAFV600E is correlated with recurrence of papillary thyroid microcarcinoma: a systematic review, multi-institutional primary data analysis, and meta-analysis. Thyroid, 2016, 26(2): 248-255.
- 48. Tallini G, de BD, Durante C, et al. BRAFV600E and risk stratification of thyroid microcarcinoma: a multicenter pathological and clinical study. Mod Pathol, 2015, 28(10): 1343-1359.
- 49. Wang Z, Chen JQ, Liu JL, et al. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest, 2016, 46(2): 146-157.
- 50. Ricarte-Filho J, Ganly I, Rivera M, et al. Papillary thyroid carcinomas with cervical lymph node metastases can be stratified into clinically relevant prognostic categories using oncogenic BRAF, the number of nodal metastases, and extra-nodal extension. Thyroid, 2012, 22(6): 575-584.
- 51. Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer, 2013, 20(4): 603-610.
- 52. Lee SE, Hwang TS, Choi YL, et al. Prognostic significance of tert promoter mutations in papillary thyroid carcinomas in a BRAFV600E mutation-prevalent population. Thyroid, 2016, 26(7): 901-910.
- 53. Tan J, Qian X, Song B, et al. Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer. Oncol Rep, 2018, 40(1): 111-122.
- 54. Wu Y, Han J, Vladimirovna KE, et al. Upregulation of protein tyrosine phosphatase receptor type c associates to the combination of hashimoto's thyroiditis and papillary thyroid carcinoma and is predictive of a poor prognosis. Onco Targets Ther, 2019, 12: 8479-8489.
- 55. Lamartina L, Montesano T, Trulli F, et al. Papillary thyroid carcinomas with biochemical incomplete or indeterminate res-ponses to initial treatment: repeat stimulated thyroglobulin assay to identify disease-free patients. Endocrine, 2016, 54(2): 467-475.
- 56. Yim JH, Kim WB, Kim EY, et al. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J Clin Endocrinol Metab, 2011, 96(7): 2049-2056.
- 57. Dvorkin S, Robenshtok E, Hirsch D, et al. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimotos thyroiditis. J Clin Endocrinol Metab, 2013, 98(6): 2409-2414.
- 58. Wassner AJ, Della VM, Jarolim P, et al. Prevalence and significance of thyroglobulin antibodies in pediatric thyroid cancer. J Clin Endocrinol Metab, 2017, 102(9): 3146-3153.
- 59. Durante C, Tognini S, Montesano T, et al. Clinical aggressiveness and long-term outcome in patients with papillary thyroid cancer and circulating anti-thyroglobulin autoantibodies. Thyroid, 2014, 24(7): 1139-1145.
- 60. Morbelli S, Ferrarazzo G, Pomposelli E, et al. Relationship between circulating anti-thyroglobulin antibodies (TgAb) and tumor metabolism in patients with differentiated thyroid cancer (DTC): prognostic implications. J Endocrinol Invest, 2017, 40(4): 417-424.
- 61. 程若川, 刘文. 中国甲状腺癌术后随访和临床研究现状反思. 中国普通外科杂志, 2017, 26(11): 1375-1382.
- 62. Grani G, Ramundo V, Falcone R, et al. Thyroid cancer patients with no evidence of disease: the need for repeat neck ultrasound. Clin Endocrinol Metab, 2019, 104(11): 4981-4989.
- 63. Durante C, Montesano T, Torlontano M, et al. Papillary thyroid cancer: time course of recurrences during postsurgery surveillance. J Clin Endocrinol Metab, 2013, 98(2): 636-642.