1. |
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology, 2017, 284(1): 228-243.
|
2. |
NCCN clinical practice guidelines in oncology: Lung cancer screening (version 1.2023). Available at www.nccn.org/patients.
|
3. |
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9): 1243-1260.
|
4. |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
5. |
Horeweg N, van der Aalst CM, Vliegenthart R, et al. Volumetric computed tomography screening for lung cancer: Three rounds of the NELSON trial. Eur Respir J, 2013, 42(6): 1659-1667.
|
6. |
Li N, Tan F, Chen W, et al. One-off low-dose CT for lung cancer screening in China: A multicentre, population-based, prospective cohort study. Lancet Respir Med, 2022, 10(4): 378-391.
|
7. |
Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening for lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e78S-e92S.
|
8. |
Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol, 2002, 178(5): 1053-1057.
|
9. |
Suzuki K, Kusumoto M, Watanabe S, et al. Radiologic classification of small adenocarcinoma of the lung: Radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg, 2006, 81(2): 413-419.
|
10. |
van Riel SJ, Sánchez CI, Bankier AA, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology, 2015, 277(3): 863-871.
|
11. |
Nair A, Bartlett EC, Walsh SLF, et al. Variable radiological lung nodule evaluation leads to divergent management recommendations. Eur Respir J, 2018, 52(6): 1801359.
|
12. |
Yankelevitz DF, Yip R, Smith JP, et al. CT screening for lung cancer: Nonsolid nodules in baseline and annual repeat rounds. Radiology, 2015, 277(2): 555-564.
|
13. |
Kim YW, Kwon BS, Lim SY, et al. Lung cancer probability and clinical outcomes of baseline and new subsolid nodules detected on low-dose CT screening. Thorax, 2021, 76(10): 980-988.
|
14. |
Detterbeck FC, Homer RJ. Approach to the ground-glass nodule. Clin Chest Med, 2011, 32(4): 799-810.
|
15. |
Aoki T. Growth of pure ground-glass lung nodule detected at computed tomography. J Thorac Dis, 2015, 7(9): E326-E328.
|
16. |
Kobayashi Y, Mitsudomi T. Management of ground-glass opacities: Should all pulmonary lesions with ground-glass opacity be surgically resected? Transl Lung Cancer Res, 2013, 2(5): 354-363.
|
17. |
Kakinuma R, Muramatsu Y, Kusumoto M, et al. Solitary pure ground-glass nodules 5 mm or smaller: Frequency of growth. Radiology, 2015, 276(3): 873-882.
|
18. |
Lee HW, Jin KN, Lee JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability. J Thorac Oncol, 2019, 14(8): 1370-1377.
|
19. |
Tang EK, Chen CS, Wu CC, et al. Natural history of persistent pulmonary subsolid nodules: Long-term observation of different interval growth. Heart Lung Circ, 2019, 28(11): 1747-1754.
|
20. |
Kakinuma R, Noguchi M, Ashizawa K, et al. Natural history of pulmonary subsolid nodules: A prospective multicenter study. J Thorac Oncol, 2016, 11(7): 1012-1028.
|
21. |
Wahidi MM, Govert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules: When is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest, 2007, 132(3 Suppl): 94S-107S.
|
22. |
Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e93S-e120S.
|
23. |
Lee GD, Park CH, Park HS, et al. Lung adenocarcinoma invasiveness risk in pure ground-glass opacity lung nodules smaller than 2 cm. Thorac Cardiovasc Surg, 2019, 67(4): 321-328.
|
24. |
Mets OM, de Jong PA, Scholten ET, et al. Subsolid pulmonary nodule morphology and associated patient characteristics in a routine clinical population. Eur Radiol, 2017, 27(2): 689-696.
|
25. |
Xiang W, Xing Y, Jiang S, et al. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography. Cancer Imaging, 2014, 14(1): 33.
|
26. |
Silva M, Sverzellati N, Manna C, et al. Long-term surveillance of ground-glass nodules: Evidence from the MILD trial. J Thorac Oncol, 2012, 7(10): 1541-1546.
|
27. |
Zhang Y, Qiang JW, Ye JD, et al. High resolution CT in differentiating minimally invasive component in early lung adenocarcinoma. Lung Cancer, 2014, 84(3): 236-241.
|
28. |
Liang J, Xu XQ, Xu H, et al. Using the CT features to differentiate invasive pulmonary adenocarcinoma from pre-invasive lesion appearing as pure or mixed ground-glass nodules. Br J Radiol, 2015, 88(1053): 20140811.
|
29. |
Gao F, Sun Y, Zhang G, et al. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions. Br J Radiol, 2019, 92(1094): 20180204.
|
30. |
Nambu A, Araki T, Taguchi Y, et al. Focal area of ground-glass opacity and ground-glass opacity predominance on thin-section CT: Discrimination between neoplastic and non-neoplastic lesions. Clin Radiol, 2005, 60(9): 1006-1017.
|
31. |
Wu F, Tian SP, Jin X, et al. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter. Eur Radiol, 2017, 27(10): 4037-4043.
|
32. |
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol, 2011, 6(4): 751-756.
|
33. |
Asamura H, Hishida T, Suzuki K, et al. Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201. J Thorac Cardiovasc Surg, 2013, 146(1): 24-30.
|
34. |
Khokhar S, Mironov S, Seshan VE, et al. Antibiotic use in the management of pulmonary nodules. Chest, 2010, 137(2): 369-375.
|
35. |
Cho H, Lee HY, Kim J, et al. Pure ground glass nodular adenocarcinomas: Are preoperative positron emission tomography/computed tomography and brain magnetic resonance imaging useful or necessary? J Thorac Cardiovasc Surg, 2015, 150(3): 514-520.
|
36. |
Li H, Ye T, Li N, et al. Is 99m Tc bone scintigraphy necessary in the preoperative workup for patients with cT1N0 subsolid lung cancer? A prospective multicenter cohort study. Thorac Cancer, 2021, 12(4): 415-419.
|
37. |
Ye T, Chen Z, Ma D, et al. Is flexible bronchoscopy necessary in the preoperative workup of patients with peripheral cT1N0 subsolid lung cancer?—A prospective multi-center cohort study. Transl Lung Cancer Res, 2021, 10(4): 1635-1641.
|
38. |
Kim H, Goo JM, Kim YT, et al. Validation of the eighth edition clinical T categorization system for clinical stage ⅠA, resected lung adenocarcinomas: Prognostic implications of the ground-glass opacity component. J Thorac Oncol, 2020, 15(4): 580-588.
|
39. |
Travis WD, Asamura H, Bankier AA, et al. The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol, 2016, 11(8): 1204-1223.
|
40. |
Hattori A, Suzuki K, Takamochi K, et al. Prognostic impact of a ground-glass opacity component in clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 161(4): 1469-1480.
|
41. |
Fu F, Zhang Y, Wen Z, et al. Distinct prognostic factors in patients with stage Ⅰ non-small cell lung cancer with radiologic part-solid or solid lesions. J Thorac Oncol, 2019, 14(12): 2133-2142.
|
42. |
Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e142S-e165S.
|
43. |
Yang JS, Liu YM, Mao YM, et al. Meta-analysis of CT-guided transthoracic needle biopsy for the evaluation of the ground-glass opacity pulmonary lesions. Br J Radiol, 2014, 87(1042): 20140276.
|
44. |
Lee KH, Lim KY, Suh YJ, et al. Nondiagnostic percutaneous transthoracic needle biopsy of lung lesions: A multicenter study of malignancy risk. Radiology, 2019, 290(3): 814-823.
|
45. |
Lee KH, Lim KY, Suh YJ, et al. Diagnostic accuracy of percutaneous transthoracic needle lung biopsies: A multicenter study. Korean J Radiol, 2019, 20(8): 1300-1310.
|
46. |
Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: Prevention and management. AJR Am J Roentgenol, 2011, 196(6): W678-W682.
|
47. |
Tomiyama N, Yasuhara Y, Nakajima Y, et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol, 2006, 59(1): 60-64.
|
48. |
Wiener RS, Schwartz LM, Woloshin S, et al. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: An analysis of discharge records. Ann Intern Med, 2011, 155(3): 137-144.
|
49. |
Yoon SH, Park CM, Lee KH, et al. Analysis of complications of percutaneous transthoracic needle biopsy using CT-guidance modalities in a multicenter cohort of 10568 biopsies. Korean J Radiol, 2019, 20(2): 323-331.
|
50. |
Huang MD, Weng HH, Hsu SL, et al. Accuracy and complications of CT-guided pulmonary core biopsy in small nodules: A single-center experience. Cancer Imaging, 2019, 19(1): 51.
|
51. |
Wang J, Ni Y, Yang X, et al. Diagnostic ability of percutaneous core biopsy immediately after microwave ablation for lung ground-glass opacity. J Cancer Res Ther, 2019, 15(4): 755-759.
|
52. |
Hasegawa T, Kondo C, Sato Y, et al. Pathologic diagnosis and genetic analysis of a lung tumor needle biopsy specimen obtained immediately after radiofrequency ablation. Cardiovasc Intervent Radiol, 2018, 41(4): 594-602.
|
53. |
Chi J, Ding M, Wang Z, et al. Pathologic diagnosis and genetic analysis of sequential biopsy following coaxial low-power microwave thermal coagulation for pulmonary ground-glass opacity nodules. Cardiovasc Intervent Radiol, 2021, 44(8): 1204-1213.
|
54. |
Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol, 2019, 14(3): 445-458.
|
55. |
Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest, 2004, 126(3): 959-965.
|
56. |
Bhatt KM, Tandon YK, Graham R, et al. Electromagnetic navigational bronchoscopy versus CT-guided percutaneous sampling of peripheral indeterminate pulmonary nodules: A cohort study. Radiology, 2018, 286(3): 1052-1061.
|
57. |
Wook Kim Y, Kim HJ, Hyun Yoon S, et al. Comparison of electromagnetic navigation bronchoscopy and transthoracic needle biopsy for diagnosing bronchus sign-positive pulmonary lesions. Lung Cancer, 2023, 181: 107234.
|
58. |
Zhan P, Zhu QQ, Miu YY, et al. Comparison between endobronchial ultrasound-guided transbronchial biopsy and CT-guided transthoracic lung biopsy for the diagnosis of peripheral lung cancer: A systematic review and meta-analysis. Transl Lung Cancer Res, 2017, 6(1): 23-34.
|
59. |
Han Y, Kim HJ, Kong KA, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis. PLoS One, 2018, 13(1): e0191590.
|
60. |
Yu Lee-Mateus A, Reisenauer J, Garcia-Saucedo JC, et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology, 2023, 28(1): 66-73.
|
61. |
刘宝东, 顾春东. 肺部小结节术前辅助定位技术专家共识 (2019版). 中国胸心血管外科临床杂志, 2019, 26(2): 109-113.
|
62. |
Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg, 1995, 60(3): 615-622.
|
63. |
Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301.
|
64. |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
|
65. |
Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stage ⅠA non-small-cell lung cancer. N Engl J Med, 2023, 388(6): 489-498.
|
66. |
Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med, 2023, 11(6): 540-549.
|
67. |
Rami-Porta R, Wittekind C, Goldstraw P, et al. Complete resection in lung cancer surgery: Proposed definition. Lung Cancer, 2005, 49(1): 25-33.
|
68. |
Zhang Y, Deng C, Zheng Q, et al. Selective mediastinal lymph node dissection strategy for clinical T1N0 invasive lung cancer: A prospective, multicenter, clinical trial. J Thorac Oncol, 2023, 18(7): 931-939.
|
69. |
Genshaft SJ, Suh RD, Abtin F, et al. Society of Interventional Radiology Quality improvement standards on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs. J Vasc Interv Radiol, 2021, 32(8): 1242. e1-1242. e10.
|
70. |
Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol, 2008, 9(7): 621-628.
|
71. |
Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498.
|
72. |
Gobara H, Arai Y, Kobayashi T, et al. Percutaneous radiofrequency ablation for patients with malignant lung tumors: A phase Ⅱ prospective multicenter study (JIVROSG-0702). Jpn J Radiol, 2016, 34(8): 556-563.
|
73. |
Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phase Ⅱ trial. J Cardiothorac Surg, 2018, 13(1): 91.
|
74. |
Li G, Xue M, Chen W, et al. Efficacy and safety of radiofrequency ablation for lung cancers: A systematic review and meta-analysis. Eur J Radiol, 2018, 100: 92-98.
|
75. |
Hu H, Zhai B, Liu R, et al. Microwave ablation versus wedge resection for stage Ⅰnon-small cell lung cancer adjacent to the pericardium: Propensity score analyses of long-term outcomes. Cardiovasc Intervent Radiol, 2021, 44(2): 237-246.
|
76. |
Ni Y, Huang G, Yang X, et al. Microwave ablation treatment for medically inoperable stage Ⅰ non-small cell lung cancers: Long-term results. Eur Radiol, 2022, 32(8): 5616-5622.
|
77. |
Han X, Wei Z, Zhao Z, et al. Cost and effectiveness of microwave ablation versus video-assisted thoracoscopic surgical resection for ground-glass nodule lung adenocarcinoma. Front Oncol, 2022, 12: 962630.
|
78. |
Sun YD, Zhang H, Liu JZ, et al. Efficacy of radiofrequency ablation and microwave ablation in the treatment of thoracic cancer: A systematic review and meta-analysis. Thorac Cancer, 2019, 10(3): 543-550.
|
79. |
Yuan Z, Wang Y, Zhang J, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol, 2019, 16(3): 302-314.
|
80. |
Macchi M, Belfiore MP, Floridi C, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol, 2017, 34(5): 96.
|
81. |
Jiang B, Mcclure MA, Chen T, et al. Efficacy and safety of thermal ablation of lung malignancies: A Network meta-analysis. Ann Thorac Med, 2018, 13(4): 243-250.
|
82. |
Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol, 2014, 25(3): 333-339.
|
83. |
Iguchi T, Hiraki T, Gobara H, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol, 2015, 38(2): 409-415.
|
84. |
Liu S, Liang B, Li Y, et al. CT-guided percutaneous cryoablation in patients with lung nodules mainly composed of ground-glass opacities. J Vasc Interv Radiol, 2022, 33(8): 942-948.
|
85. |
Yang X, Ye X, Lin Z, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther, 2018, 14(4): 764-771.
|
86. |
谭晓刚, 刘宝东. 射频消融治疗肺磨玻璃结节的临床价值. 中国肺癌杂志, 2021, 24(10): 677-682.
|
87. |
Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268.
|
88. |
Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55.
|
89. |
Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298.
|
90. |
叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识 (2021年版). 中国肺癌杂志, 2021, 24(5): 305-322.
|
91. |
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南 (2021版). 中华医学杂志, 2021, 101(23): 1725-1757.
|
92. |
Wu YL, Tsuboi M, He J, et al. Osimertinib in Resected EGFR-mutated non-small-cell lung cancer. N Engl J Med, 2020, 383(18): 1711-1723.
|
93. |
Herbst RS, Wu YL, John T, et al. Adjuvant osimertinib for resected EGFR-mutated stageⅠB-ⅢA non-small-cell lung cancer: Updated results from the phase Ⅲ randomized ADAURA trial. J Clin Oncol, 2023, 41(10): 1830-1840.
|
94. |
Ou W, Li N, Wang BX, et al. Adjuvant icotinib versus observation in patients with completely resected EGFR-mutated stageⅠB NSCLC (GASTO1003, CORIN): A randomised, open-label, phase 2 trial. EClinicalMedicine, 2023, 57: 101839.
|
95. |
Westeel V, Foucher P, Scherpereel A, et al. Chest CT scan plus X-ray versus chest X-ray for the follow-up of completely resected non-small-cell lung cancer (IFCT-0302): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol, 2022, 23(9): 1180-1188.
|
96. |
Heiden BT, Eaton DB, Chang SH, et al. Association between imaging surveillance frequency and outcomes following surgical treatment of early-stage lung cancer. J Natl Cancer Inst, 2023, 115(3): 303-310.
|
97. |
Xia L, Mei J, Kang R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res, 2022, 28(15): 3308-3317.
|
98. |
刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价. 中国医学前沿杂志 (电子版), 2015, 7(2): 11-14.
|
99. |
Ye X, Fan W, Wang Z, et al. Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition). J Cancer Res Ther, 2021, 17(5): 1141-1156.
|
100. |
Kim HK, Choi YS, Kim J, et al. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol, 2010, 5(2): 206-210.
|
101. |
Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer, 2015, 88(2): 174-180.
|
102. |
Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg, 2017, 65(2): 142-149.
|
103. |
Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg, 2017, 154(6): 2092-2099.
|