- Department of Thoracic Surgery, Shanghai Pulmonary Hospital Affiliated Tongji University, Shanghai, 200433, P. R. China;
In recent years, the detection rate of multiple primary lung cancers has been increasing year by year. However, there existed discrepance in cognition and treatment modalities for multiple primary early lung cancers among different physicians, which affects the standardized treatment for early-stage multiple primary lung cancers. Therefore, based on a thorough review of domestic and foreign literature, our team proposes this expert consensus focusing on the treatment of early-stage multiple primary lung cancers in China, aiming at providing reference for physicians in early-stage multiple primary lung cancers' treatment and further improving the level of standardized diagnosis and therapy of lung cancer in China.
Citation: Thoracic Surgery Branch of Shanghai Medical Association, Thoracic Surgery Branch of Shanghai Medical Doctor Association, Professional Alliance for Promotion and Improvement of Clinical Ability of General Thoracic Surgery. Expert consensus on the treatment of early-stage multiple primary lung cancers. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2022, 29(12): 1545-1553. doi: 10.7507/1007-4848.202210015 Copy
Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
1. | 侯晶晶, 王慧娟, 张国伟, 等. 多原发肺癌的诊断与治疗. 中国肺癌杂志, 2015, 18(12): 764-769. |
2. | Lv J, Zhu D, Wang X, et al. The value of prognostic factors for survival in synchronous multifocal lung cancer: A retrospective analysis of 164 patients. Ann Thorac Surg, 2018, 105(3): 930-936. |
3. | Xiao F, Liu D, Guo Y, et al. Survival rate and prognostic factors of surgically resected clinically synchronous multiple primary non-small cell lung cancer and further differentiation from intrapulmonary metastasis. J Thorac Dis, 2017, 9(4): 990-1001. |
4. | Chang YL, Wu CT, Lee YC. Surgical treatment of synchronous multiple primary lung cancers: Experience of 92 patients. J Thorac Cardiovasc Surg, 2007, 134(3): 630-637. |
5. | Adebonojo SA, Moritz DM, Danby CA. The results of modern surgical therapy for multiple primary lung cancers. Chest, 1997, 112(3): 693-701. |
6. | Miura H, Nakajima N, Takahashi H, et al. Therapeutic strategy for secondary lung cancer. Kyobu Geka, 2010, 63(11): 956-961. |
7. | Johnson BE. Second lung cancers in patients after treatment for an initial lung cancer. J Natl Cancer Inst, 1998, 90(18): 1335-1345. |
8. | Lou F, Huang J, Sima CS, et al. Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J Thorac Cardiovasc Surg, 2013, 145(1): 75-81. |
9. | Leventakos K, Peikert T, Midthun DE, et al. Management of multifocal lung cancer: Results of a survey. J Thorac Oncol, 2017, 12(9): 1398-1402. |
10. | Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3. 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2022, 20(5): 497-530. |
11. | Remon J, Soria JC, Peters S, et al. Early and locally advanced non-small-cell lung cancer: An update of the ESMO clinical practice guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol, 2021, 32(12): 1637-1642. |
12. | Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC lung cancer staging project: Summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol, 2016, 11(5): 639-650. |
13. | Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc Surg, 1975, 70(4): 606-612. |
14. | Mansuet-Lupo A, Barritault M, Alifano M, et al. Proposal for a combined histomolecular algorithm to distinguish multiple primary adenocarcinomas from intrapulmonary metastasis in patients with multiple lung tumors. J Thorac Oncol, 2019, 14(5): 844-856. |
15. | Ono K, Sugio K, Uramoto H, et al. Discrimination of multiple primary lung cancers from intrapulmonary metastasis based on the expression of four cancer-related proteins. Cancer, 2009, 115(15): 3489-3500. |
16. | 戴洁, 姜格宁. 多原发肺癌的诊治进展. 上海医学, 2020, 43(7): 439-444. |
17. | Kozower BD, Larner JM, Detterbeck FC, et al. Special treatment issues in non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e369S-e399S. |
18. | Girard N, Deshpande C, Lau C, et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am J Surg Pathol, 2009, 33(12): 1752-1764. |
19. | Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC lung cancer staging project: Background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(5): 651-665. |
20. | Thunnissen E, Beasley MB, Borczuk AC, et al. Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol, 2012, 25(12): 1574-1583. |
21. | 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版). 中华医学杂志, 2022, 102(23): 1706-1740. |
22. | Dijkman BG, Schuurbiers OC, Vriens D, et al. The role of (18)F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2037-2047. |
23. | Liu Y, Tang Y, Xue Z, et al. SUVmax ratio on PET/CT may differentiate between lung metastases and synchronous multiple primary lung cancer. Acad Radiol, 2020, 27(5): 618-623. |
24. | Antakli T, Schaefer RF, Rutherford JE, et al. Second primary lung cancer. Ann Thorac Surg, 1995, 59(4): 863-866. |
25. | Murphy SJ, Harris FR, Kosari F, et al. Using genomics to differentiate multiple primaries from metastatic lung cancer. J Thorac Oncol, 2019, 14(9): 1567-1582. |
26. | Murphy SJ, Aubry MC, Harris FR, et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non-small-cell lung cancer. J Clin Oncol, 2014, 32(36): 4050-4058. |
27. | Chen D, Mei L, Zhou Y, et al. A novel differential diagnostic model for multiple primary lung cancer: Differentially-expressed gene analysis of multiple primary lung cancer and intrapulmonary metastasis. Oncol Lett, 2015, 9(3): 1081-1088. |
28. | 王继凡, 张特, 丁翰林, 等. 同时性多原发肺癌与肺内转移鉴别方法研究进展. 中国肺癌杂志, 2021, 24(5): 365-371. |
29. | Shen C, Wang X, Tian L, et al. "Different trend" in multiple primary lung cancer and intrapulmonary metastasis. Eur J Med Res, 2015, 20(1): 17. |
30. | 韩连奎, 高树庚, 谭锋维, 等. 同时性多原发肺癌的诊治体会及处理策略新进展. 中国肺癌杂志, 2018, 21(3): 180-184. |
31. | 支修益, 刘伦旭. 中国胸外科围手术期气道管理指南(2020版). 中国胸心血管外科临床杂志, 2021, 28(3): 251-262. |
32. | 姜格宁, 陈昶, 朱余明, 等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版). 中国肺癌杂志, 2018, 21(3): 147-159. |
33. | Loukeri AA, Kampolis CF, Ntokou A, et al. Metachronous and synchronous primary lung cancers: Diagnostic aspects, surgical treatment, and prognosis. Clin Lung Cancer, 2015, 16(1): 15-23. |
34. | Yuan Z, Wang Y, Zhang J, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol, 2019, 16(3): 302-314. |
35. | Macchi M, Belfiore MP, Floridi C, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol, 2017, 34(5): 96. |
36. | 叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识(2021年版). 中国肺癌杂志, 2021, 24(5): 305-322. |
37. | Jones GC, Kehrer JD, Kahn J, et al. Primary treatment options for high-risk/medically inoperable early stage NSCLC patients. Clin Lung Cancer, 2015, 16(6): 413-430. |
38. | Colak E, Tatlı S, Shyn PB, et al. CT-guided percutaneous cryoablation of central lung tumors. Diagn Interv Radiol, 2014, 20(4): 316-322. |
39. | Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol, 2008, 9(7): 621-628. |
40. | Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498. |
41. | Gobara H, Arai Y, Kobayashi T, et al. Percutaneous radiofrequency ablation for patients with malignant lung tumors: A phaseⅡ prospective multicenter study (JIVROSG-0702). Jpn J Radiol, 2016, 34(8): 556-563. |
42. | Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phaseⅡ trial. J Cardiothorac Surg, 2018, 13(1): 91. |
43. | Genshaft SJ, Suh RD, Abtin F, et al. Society of Interventional Radiology Quality Improvement Standards on percutaneous ablation of non-small cell lung cancer and metastatic fisease to the lungs. J Vasc Interv Radiol, 2021, 32(8): 1242.e1-1242.e10. |
44. | Wang Y, Liu B, Cao P, et al. Comparison between computed tomography-guided percutaneous microwave ablation and thoracoscopic lobectomy for stageⅠ non-small cell lung cancer. Thorac Cancer, 2018, 9(11): 1376-1382. |
45. | Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stageⅠ non-small cell lung cancer. J Am Coll Surg, 2010, 211(1): 68-72. |
46. | Kim SR, Han HJ, Park SJ, et al. Comparison between surgery and radiofrequency ablation for stage Ⅰ non-small cell lung cancer. Eur J Radiol, 2012, 81(2): 395-399. |
47. | Alexander ES, Machan JT, Ng T, et al. Cost and effectiveness of radiofrequency ablation versus limited surgical resection for stageⅠ non-small-cell lung cancer in elderly patients: Is less more? J Vasc Interv Radiol, 2013, 24(4): 476-482. |
48. | Safi S, Rauch G, op den Winkel J, et al. Sublobar resection, radiofrequency ablation or radiotherapy in stageⅠ non-small cell lung cancer. Respiration, 2015, 89(6): 550-557. |
49. | Ambrogi MC, Fanucchi O, Dini P, et al. Wedge resection and radiofrequency ablation for stageⅠ non-small cell lung cancer. Eur Respir J, 2015, 45(4): 1089-1097. |
50. | Yao W, Lu M, Fan W, et al. Comparison between microwave ablation and lobectomy for stageⅠ non-small cell lung cancer: A propensity score analysis. Int J Hyperthermia, 2018, 34(8): 1329-1336. |
51. | Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol, 2014, 25(3): 333-339. |
52. | Iguchi T, Hiraki T, Gobara H, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol, 2015, 38(2): 409-415. |
53. | Yang X, Ye X, Lin Z, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther, 2018, 14(4): 764-771. |
54. | Huang G, Yang X, Li W, et al. A feasibility and safety study of computed tomography-guided percutaneous microwave ablation: A novel therapy for multiple synchronous ground-glass opacities of the lung. Int J Hyperthermia, 2020, 37(1): 414-422. |
55. | Liu B, Ye X. Computed tomography-guided percutaneous microwave ablation: A novel perspective to treat multiple pulmonary ground-glass opacities. Thorac Cancer, 2020, 11(9): 2385-2388. |
56. | Wolf FJ, Grand DJ, Machan JT, et al. Microwave ablation of lung malignancies: Effectiveness, CT findings, and safety in 50 patients. Radiology, 2008, 247(3): 871-879. |
57. | den Brok MH, Sutmuller RP, van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res, 2004, 64(11): 4024-4029. |
58. | Gao S, Stein S, Petre EN, et al. Micropapillary and/or solid histologic subtype based on pre-treatment biopsy predicts local recurrence after thermal ablation of lung adenocarcinoma. Cardiovasc Intervent Radiol, 2018, 41(2): 253-259. |
59. | Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268. |
60. | Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55. |
61. | Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298. |
62. | Bao F, Yu F, Wang R, et al. Electromagnetic bronchoscopy guided microwave ablation for early stage lung cancer presenting as ground glass nodule. Transl Lung Cancer Res, 2021, 10(9): 3759-3770. |
63. | Jiang N, Zhang L, Hao Y, et al. Combination of electromagnetic navigation bronchoscopy-guided microwave ablation and thoracoscopic resection: An alternative for treatment of multiple pulmonary nodules. Thorac Cancer, 2020, 11(6): 1728-1733. |
64. | Qu R, Tu D, Hu S, et al. Electromagnetic navigation bronchoscopy-guided microwave ablation combined with uniportal video-assisted thoracoscopic surgery for multiple ground glass opacities. Ann Thorac Surg, 2022, 113(4): 1307-1315. |
65. | Chan JWY, Lau RWH, Ngai JCL, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance—A novel technique and initial experience with 30 cases. Transl Lung Cancer Res, 2021, 10(4): 1608-1622. |
66. | Khan KA, Nardelli P, Jaeger A, et al. Navigational bronchoscopy for early lung cancer: A road to therapy. Adv Ther, 2016, 33(4): 580-596. |
67. | 张肖, 肖越勇, 李成利. 影像学引导下肺结节冷冻消融专家共识(2022版). 中国介入影像与治疗学, 2022, 19(1): 2-6. |
68. | Kim YS, Lee WJ, Rhim H, et al. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol, 2010, 195(3): 758-765. |
69. | Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol, 2013, 36(1): 166-175. |
70. | Giraud P, Antoine M, Larrouy A, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys, 2000, 48(4): 1015-1024. |
71. | Liu B, Zhang Y, Su L, et al. Treatment options for pulmonary multifocal ground glass opacity type adenocarcinoma: Surgery combine thermal ablation? J Interv Med, 2020, 3(4): 180-183. |
72. | 中国临床肿瘤学会. 中国临床肿瘤学会(CSCO)非小细胞肺癌诊疗指南 2022. 2022-4-25. |
73. | 赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京). 中华肿瘤杂志, 2021, 43(3): 243-268. |
74. | Kim HK, Choi YS, Kim J, et al. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol, 2010, 5(2): 206-210. |
75. | Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer, 2015, 88(2): 174-180. |
76. | Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg, 2017, 65(2): 142-149. |
77. | Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg, 2017, 154(6): 2092-2099. |
78. | Zhang Y, Deng C, Ma X, et al. Ground-glass opacity-featured lung adenocarcinoma has no response to chemotherapy. J Cancer Res Clin Oncol, 2020, 146(9): 2411-2417. |
79. | Wu FY, Li W, Zhao WC, et al. Synchronous ground‐glass nodules showed limited response to anti‐PD‐1/PD‐L1 therapy in patients with advanced lung adenocarcinoma. Clin Trans Med, 2020, 10(3): e149. |
80. | Cheng B, Li C, Zhao Y, et al. The impact of postoperative EGFR-TKIs treatment on residual GGO lesions after resection for lung cancer. Signal Transduct Target Ther, 2021, 6(1): 73. |
81. | 刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价. 中国医学前沿杂志(电子版), 2015, 7(2): 11-14. |
82. | 刘磊, 张毅, 支修益, 等. CT引导下肺癌射频消融术疗效评估及并发症分析. 临床与病理杂志, 2015, (7): 1376-1379. |
83. | Hiramatsu M, Inagaki T, Inagaki T, et al. Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth. J Thorac Oncol, 2008, 3(11): 1245-1250. |
- 1. 侯晶晶, 王慧娟, 张国伟, 等. 多原发肺癌的诊断与治疗. 中国肺癌杂志, 2015, 18(12): 764-769.
- 2. Lv J, Zhu D, Wang X, et al. The value of prognostic factors for survival in synchronous multifocal lung cancer: A retrospective analysis of 164 patients. Ann Thorac Surg, 2018, 105(3): 930-936.
- 3. Xiao F, Liu D, Guo Y, et al. Survival rate and prognostic factors of surgically resected clinically synchronous multiple primary non-small cell lung cancer and further differentiation from intrapulmonary metastasis. J Thorac Dis, 2017, 9(4): 990-1001.
- 4. Chang YL, Wu CT, Lee YC. Surgical treatment of synchronous multiple primary lung cancers: Experience of 92 patients. J Thorac Cardiovasc Surg, 2007, 134(3): 630-637.
- 5. Adebonojo SA, Moritz DM, Danby CA. The results of modern surgical therapy for multiple primary lung cancers. Chest, 1997, 112(3): 693-701.
- 6. Miura H, Nakajima N, Takahashi H, et al. Therapeutic strategy for secondary lung cancer. Kyobu Geka, 2010, 63(11): 956-961.
- 7. Johnson BE. Second lung cancers in patients after treatment for an initial lung cancer. J Natl Cancer Inst, 1998, 90(18): 1335-1345.
- 8. Lou F, Huang J, Sima CS, et al. Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J Thorac Cardiovasc Surg, 2013, 145(1): 75-81.
- 9. Leventakos K, Peikert T, Midthun DE, et al. Management of multifocal lung cancer: Results of a survey. J Thorac Oncol, 2017, 12(9): 1398-1402.
- 10. Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3. 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
- 11. Remon J, Soria JC, Peters S, et al. Early and locally advanced non-small-cell lung cancer: An update of the ESMO clinical practice guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol, 2021, 32(12): 1637-1642.
- 12. Detterbeck FC, Nicholson AG, Franklin WA, et al. The IASLC lung cancer staging project: Summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification. J Thorac Oncol, 2016, 11(5): 639-650.
- 13. Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc Surg, 1975, 70(4): 606-612.
- 14. Mansuet-Lupo A, Barritault M, Alifano M, et al. Proposal for a combined histomolecular algorithm to distinguish multiple primary adenocarcinomas from intrapulmonary metastasis in patients with multiple lung tumors. J Thorac Oncol, 2019, 14(5): 844-856.
- 15. Ono K, Sugio K, Uramoto H, et al. Discrimination of multiple primary lung cancers from intrapulmonary metastasis based on the expression of four cancer-related proteins. Cancer, 2009, 115(15): 3489-3500.
- 16. 戴洁, 姜格宁. 多原发肺癌的诊治进展. 上海医学, 2020, 43(7): 439-444.
- 17. Kozower BD, Larner JM, Detterbeck FC, et al. Special treatment issues in non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl): e369S-e399S.
- 18. Girard N, Deshpande C, Lau C, et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am J Surg Pathol, 2009, 33(12): 1752-1764.
- 19. Detterbeck FC, Franklin WA, Nicholson AG, et al. The IASLC lung cancer staging project: Background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(5): 651-665.
- 20. Thunnissen E, Beasley MB, Borczuk AC, et al. Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol, 2012, 25(12): 1574-1583.
- 21. 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版). 中华医学杂志, 2022, 102(23): 1706-1740.
- 22. Dijkman BG, Schuurbiers OC, Vriens D, et al. The role of (18)F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumours. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2037-2047.
- 23. Liu Y, Tang Y, Xue Z, et al. SUVmax ratio on PET/CT may differentiate between lung metastases and synchronous multiple primary lung cancer. Acad Radiol, 2020, 27(5): 618-623.
- 24. Antakli T, Schaefer RF, Rutherford JE, et al. Second primary lung cancer. Ann Thorac Surg, 1995, 59(4): 863-866.
- 25. Murphy SJ, Harris FR, Kosari F, et al. Using genomics to differentiate multiple primaries from metastatic lung cancer. J Thorac Oncol, 2019, 14(9): 1567-1582.
- 26. Murphy SJ, Aubry MC, Harris FR, et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non-small-cell lung cancer. J Clin Oncol, 2014, 32(36): 4050-4058.
- 27. Chen D, Mei L, Zhou Y, et al. A novel differential diagnostic model for multiple primary lung cancer: Differentially-expressed gene analysis of multiple primary lung cancer and intrapulmonary metastasis. Oncol Lett, 2015, 9(3): 1081-1088.
- 28. 王继凡, 张特, 丁翰林, 等. 同时性多原发肺癌与肺内转移鉴别方法研究进展. 中国肺癌杂志, 2021, 24(5): 365-371.
- 29. Shen C, Wang X, Tian L, et al. "Different trend" in multiple primary lung cancer and intrapulmonary metastasis. Eur J Med Res, 2015, 20(1): 17.
- 30. 韩连奎, 高树庚, 谭锋维, 等. 同时性多原发肺癌的诊治体会及处理策略新进展. 中国肺癌杂志, 2018, 21(3): 180-184.
- 31. 支修益, 刘伦旭. 中国胸外科围手术期气道管理指南(2020版). 中国胸心血管外科临床杂志, 2021, 28(3): 251-262.
- 32. 姜格宁, 陈昶, 朱余明, 等. 上海市肺科医院磨玻璃结节早期肺腺癌的诊疗共识(第一版). 中国肺癌杂志, 2018, 21(3): 147-159.
- 33. Loukeri AA, Kampolis CF, Ntokou A, et al. Metachronous and synchronous primary lung cancers: Diagnostic aspects, surgical treatment, and prognosis. Clin Lung Cancer, 2015, 16(1): 15-23.
- 34. Yuan Z, Wang Y, Zhang J, et al. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol, 2019, 16(3): 302-314.
- 35. Macchi M, Belfiore MP, Floridi C, et al. Radiofrequency versus microwave ablation for treatment of the lung tumours: LUMIRA (lung microwave radiofrequency) randomized trial. Med Oncol, 2017, 34(5): 96.
- 36. 叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识(2021年版). 中国肺癌杂志, 2021, 24(5): 305-322.
- 37. Jones GC, Kehrer JD, Kahn J, et al. Primary treatment options for high-risk/medically inoperable early stage NSCLC patients. Clin Lung Cancer, 2015, 16(6): 413-430.
- 38. Colak E, Tatlı S, Shyn PB, et al. CT-guided percutaneous cryoablation of central lung tumors. Diagn Interv Radiol, 2014, 20(4): 316-322.
- 39. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol, 2008, 9(7): 621-628.
- 40. Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer, 2015, 121(19): 3491-3498.
- 41. Gobara H, Arai Y, Kobayashi T, et al. Percutaneous radiofrequency ablation for patients with malignant lung tumors: A phaseⅡ prospective multicenter study (JIVROSG-0702). Jpn J Radiol, 2016, 34(8): 556-563.
- 42. Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage ⅠA non-small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phaseⅡ trial. J Cardiothorac Surg, 2018, 13(1): 91.
- 43. Genshaft SJ, Suh RD, Abtin F, et al. Society of Interventional Radiology Quality Improvement Standards on percutaneous ablation of non-small cell lung cancer and metastatic fisease to the lungs. J Vasc Interv Radiol, 2021, 32(8): 1242.e1-1242.e10.
- 44. Wang Y, Liu B, Cao P, et al. Comparison between computed tomography-guided percutaneous microwave ablation and thoracoscopic lobectomy for stageⅠ non-small cell lung cancer. Thorac Cancer, 2018, 9(11): 1376-1382.
- 45. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stageⅠ non-small cell lung cancer. J Am Coll Surg, 2010, 211(1): 68-72.
- 46. Kim SR, Han HJ, Park SJ, et al. Comparison between surgery and radiofrequency ablation for stage Ⅰ non-small cell lung cancer. Eur J Radiol, 2012, 81(2): 395-399.
- 47. Alexander ES, Machan JT, Ng T, et al. Cost and effectiveness of radiofrequency ablation versus limited surgical resection for stageⅠ non-small-cell lung cancer in elderly patients: Is less more? J Vasc Interv Radiol, 2013, 24(4): 476-482.
- 48. Safi S, Rauch G, op den Winkel J, et al. Sublobar resection, radiofrequency ablation or radiotherapy in stageⅠ non-small cell lung cancer. Respiration, 2015, 89(6): 550-557.
- 49. Ambrogi MC, Fanucchi O, Dini P, et al. Wedge resection and radiofrequency ablation for stageⅠ non-small cell lung cancer. Eur Respir J, 2015, 45(4): 1089-1097.
- 50. Yao W, Lu M, Fan W, et al. Comparison between microwave ablation and lobectomy for stageⅠ non-small cell lung cancer: A propensity score analysis. Int J Hyperthermia, 2018, 34(8): 1329-1336.
- 51. Kodama H, Yamakado K, Hasegawa T, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol, 2014, 25(3): 333-339.
- 52. Iguchi T, Hiraki T, Gobara H, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol, 2015, 38(2): 409-415.
- 53. Yang X, Ye X, Lin Z, et al. Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther, 2018, 14(4): 764-771.
- 54. Huang G, Yang X, Li W, et al. A feasibility and safety study of computed tomography-guided percutaneous microwave ablation: A novel therapy for multiple synchronous ground-glass opacities of the lung. Int J Hyperthermia, 2020, 37(1): 414-422.
- 55. Liu B, Ye X. Computed tomography-guided percutaneous microwave ablation: A novel perspective to treat multiple pulmonary ground-glass opacities. Thorac Cancer, 2020, 11(9): 2385-2388.
- 56. Wolf FJ, Grand DJ, Machan JT, et al. Microwave ablation of lung malignancies: Effectiveness, CT findings, and safety in 50 patients. Radiology, 2008, 247(3): 871-879.
- 57. den Brok MH, Sutmuller RP, van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res, 2004, 64(11): 4024-4029.
- 58. Gao S, Stein S, Petre EN, et al. Micropapillary and/or solid histologic subtype based on pre-treatment biopsy predicts local recurrence after thermal ablation of lung adenocarcinoma. Cardiovasc Intervent Radiol, 2018, 41(2): 253-259.
- 59. Santos RS, Gupta A, Ebright MI, et al. Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg, 2010, 89(1): 265-268.
- 60. Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration, 2015, 90(1): 47-55.
- 61. Xie F, Zheng X, Xiao B, et al. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration, 2017, 94(3): 293-298.
- 62. Bao F, Yu F, Wang R, et al. Electromagnetic bronchoscopy guided microwave ablation for early stage lung cancer presenting as ground glass nodule. Transl Lung Cancer Res, 2021, 10(9): 3759-3770.
- 63. Jiang N, Zhang L, Hao Y, et al. Combination of electromagnetic navigation bronchoscopy-guided microwave ablation and thoracoscopic resection: An alternative for treatment of multiple pulmonary nodules. Thorac Cancer, 2020, 11(6): 1728-1733.
- 64. Qu R, Tu D, Hu S, et al. Electromagnetic navigation bronchoscopy-guided microwave ablation combined with uniportal video-assisted thoracoscopic surgery for multiple ground glass opacities. Ann Thorac Surg, 2022, 113(4): 1307-1315.
- 65. Chan JWY, Lau RWH, Ngai JCL, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance—A novel technique and initial experience with 30 cases. Transl Lung Cancer Res, 2021, 10(4): 1608-1622.
- 66. Khan KA, Nardelli P, Jaeger A, et al. Navigational bronchoscopy for early lung cancer: A road to therapy. Adv Ther, 2016, 33(4): 580-596.
- 67. 张肖, 肖越勇, 李成利. 影像学引导下肺结节冷冻消融专家共识(2022版). 中国介入影像与治疗学, 2022, 19(1): 2-6.
- 68. Kim YS, Lee WJ, Rhim H, et al. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol, 2010, 195(3): 758-765.
- 69. Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol, 2013, 36(1): 166-175.
- 70. Giraud P, Antoine M, Larrouy A, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys, 2000, 48(4): 1015-1024.
- 71. Liu B, Zhang Y, Su L, et al. Treatment options for pulmonary multifocal ground glass opacity type adenocarcinoma: Surgery combine thermal ablation? J Interv Med, 2020, 3(4): 180-183.
- 72. 中国临床肿瘤学会. 中国临床肿瘤学会(CSCO)非小细胞肺癌诊疗指南 2022. 2022-4-25.
- 73. 赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京). 中华肿瘤杂志, 2021, 43(3): 243-268.
- 74. Kim HK, Choi YS, Kim J, et al. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol, 2010, 5(2): 206-210.
- 75. Shimada Y, Saji H, Otani K, et al. Survival of a surgical series of lung cancer patients with synchronous multiple ground-glass opacities, and the management of their residual lesions. Lung Cancer, 2015, 88(2): 174-180.
- 76. Hattori A, Matsunaga T, Takamochi K, et al. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg, 2017, 65(2): 142-149.
- 77. Gao RW, Berry MF, Kunder CA, et al. Survival and risk factors for progression after resection of the dominant tumor in multifocal, lepidic-type pulmonary adenocarcinoma. J Thorac Cardiovasc Surg, 2017, 154(6): 2092-2099.
- 78. Zhang Y, Deng C, Ma X, et al. Ground-glass opacity-featured lung adenocarcinoma has no response to chemotherapy. J Cancer Res Clin Oncol, 2020, 146(9): 2411-2417.
- 79. Wu FY, Li W, Zhao WC, et al. Synchronous ground‐glass nodules showed limited response to anti‐PD‐1/PD‐L1 therapy in patients with advanced lung adenocarcinoma. Clin Trans Med, 2020, 10(3): e149.
- 80. Cheng B, Li C, Zhao Y, et al. The impact of postoperative EGFR-TKIs treatment on residual GGO lesions after resection for lung cancer. Signal Transduct Target Ther, 2021, 6(1): 73.
- 81. 刘宝东, 支修益. 影像引导下热消融治疗肺部肿瘤的局部疗效评价. 中国医学前沿杂志(电子版), 2015, 7(2): 11-14.
- 82. 刘磊, 张毅, 支修益, 等. CT引导下肺癌射频消融术疗效评估及并发症分析. 临床与病理杂志, 2015, (7): 1376-1379.
- 83. Hiramatsu M, Inagaki T, Inagaki T, et al. Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth. J Thorac Oncol, 2008, 3(11): 1245-1250.