1. |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
2. |
Lin Y, Totsuka Y, Shan B, et al. Esophageal cancer in high-risk areas of China: Research progress and challenges. Ann Epidemiol, 2017, 27(3): 215-221.
|
3. |
Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet, 2013, 381(9864): 400-412.
|
4. |
李珊, 陈霖, 张宇航, 等. 早期食管癌: 内镜还是外科手术? 中国胸心血管外科临床杂志, 2020, 27(10): 1223-1227.
|
5. |
Thakkar SJ, Kochhar GS. Artificial intelligence for real-time detection of early esophageal cancer: Another set of eyes to better visualize. Gastrointest Endosc, 2020, 91(1): 52-54.
|
6. |
de Souza LA, Palm C, Mendel R, et al. A survey on Barrett's esophagus analysis using machine learning. Comput Biol Med, 2018, 96: 203-213.
|
7. |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
|
8. |
Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pat Recog, 1997, 30(7): 1145-1159.
|
9. |
Noma H, Matsushima Y, Ishii R. Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Commun Stat Case Stud Data Anal Appl, 2021, 7: 344-358.
|
10. |
Kumagai Y, Takubo K, Kawada K, et al. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus, 2019, 16(2): 180-187.
|
11. |
Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc, 2019, 89(1): 25-32.
|
12. |
de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy. United European Gastroenterol J, 2019, 7(4): 538-547.
|
13. |
Cai SL, Li B, Tan WM, et al. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest Endosc, 2019, 90(5): 745-753.
|
14. |
Fonollà R, Scheeve T, Struyvenberg MR, et al. Ensemble of deep con-volutional neural networks for classification of early Barrett's neopla-sia using volumetric laser endomicroscopy. Appl Sci, 2019, 9: 2183.
|
15. |
石善江, 王宏光, 刘时助, 等. 应用卷积神经网络的人工智能技术在早期食管癌诊断中的临床分析. 中外医疗, 2019, 38(18): 7-9, 16.
|
16. |
Ohmori M, Ishihara R, Aoyama K, et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc, 2020, 91(2): 301-309.
|
17. |
Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc, 2020, 91(1): 41-51.
|
18. |
Fukuda H, Ishihara R, Kato Y, et al. Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video). Gastrointest Endosc, 2020, 92(4): 848-855.
|
19. |
Tokai Y, Yoshio T, Aoyama K, et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus, 2020, 17(3): 250-256.
|
20. |
Liu G, Hua J, Wu Z, et al. Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network. Ann Transl Med, 2020, 8(7): 486.
|
21. |
Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video). Gastrointest Endosc, 2020, 91(6): 1264-1271.
|
22. |
de Groof AJ, Struyvenberg MR, Fockens KN, et al. Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest Endosc, 2020, 91(6): 1242-1250.
|
23. |
de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology, 2020, 158(4): 915-929.
|
24. |
Yang XX, Li Z, Shao XJ, et al. Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Dig Endosc, 2021, 33(7): 1075-1084.
|
25. |
Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut, 2020, 69(4): 615-616.
|
26. |
Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol, 2021, 36(1): 131-136.
|
27. |
Wei WQ, Chen ZF, He YT, et al. Long-term follow-up of a community assignment, one-time endoscopic screening study of esophageal cancer in China. J Clin Oncol, 2015, 33(17): 1951-1957.
|
28. |
Mehrer J, Spoerer CJ, Jones EC, et al. An ecologically motivated image dataset for deep learning yields better models of human vision. Proc Natl Acad Sci U S A, 2021, 118(8): e2011417118.
|
29. |
付一鸣, 刘晓燕, 韩泽龙, 等. 人工智能辅助内镜在消化道早癌筛查应用研究进展. 中华消化内镜杂志, 2019, 36(4): 296-299.
|
30. |
王智杰, 高杰, 孟茜茜, 等. 基于深度学习的人工智能技术在早期胃癌诊断中的应用. 中华消化内镜杂志, 2018, 35(8): 551-556.
|
31. |
李幼平, 主编. 实用循证医学. 北京: 人民卫生出版社, 2018.
|
32. |
中华医学会消化内镜学分会消化系早癌内镜诊断与治疗协作组, 中华医学会消化病学分会消化道肿瘤协作组, 中华医学会消化病学分会消化病理学组. 中国早期食管鳞状细胞癌及癌前病变筛查与诊治共识(2015年, 北京). 中华消化内镜杂志, 2016, 33(1): 3-18.
|
33. |
Akutsu Y, Uesato M, Shuto K, et al. The overall prevalence of metastasis in T1 esophageal squamous cell carcinoma: A retrospective analysis of 295 patients. Ann Surg, 2013, 257(6): 1032-1038.
|
34. |
Kitagawa Y, Uno T, Oyama T, et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: Part 2. Esophagus, 2019, 16(1): 25-43.
|
35. |
Everson M, Herrera L, Li W, et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United European Gastroenterol J, 2019, 7(2): 297-306.
|