- 1. Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China;
- 2. Institutes for Translational Medicine, Soochow University, Suzhou Jiangsu, 215123, P. R. China;
Citation: WU Junfeng, KONG Xiangdong, LÜ Qiang. Research progress of silk-based biomaterials for peripheral nerve regeneration. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(9): 1149-1156. doi: 10.7507/1002-1892.202402071 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | 刘彤, 闫晓静, 陈超. 丝素蛋白纳米纤维的研究进展. 纺织报告, 2022, 41(10): 22-24. |
2. | 邵正中, 舒雄, 管娟. 丝蛋白应用于骨软骨损伤修复的研究进展与展望. 骨科临床与研究杂志, 2023, 8(5): 306-309. |
3. | 王波, 刘滨璐, 苏卫东, 等. 丝素蛋白基组织工程支架材料的研究进展. 上海纺织科技, 2023, 51(12): 1-6, 56. |
4. | Sarker MD, Naghieh S, McInnes AD, et al. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol, 2018, 171: 125-150. |
5. | Noble J, Munro CA, Prasad VS, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998, 45(1): 116-122. |
6. | Junggeon P, Jin J, Byongyeon K, et al. Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Advanced Functional Materials, 2020, 30(39): 2003759.1-2003759.14. |
7. | Li R, Liu Z, Pan Y, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys, 2014, 68(3): 449-454. |
8. | Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol, 2019, 319: 112761. doi: 10.1016/j.expneurol.2018.05.016. |
9. | 刘晓琳, 王金武, 戴尅戎, 等. 神经肌肉电刺激治疗周围神经损伤的研究进展. 中国修复重建外科杂志, 2010, 24(5): 622-627. |
10. | Zhang J, Liu D, Zhou G, et al. Application of nanomaterials in tissue engineering. Progress in Chemistry, 2010, 22(11): 2232-2237. |
11. | Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol, 2010, 92(3): 245-276. |
12. | Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol, 2010, 223(1): 77-85. |
13. | Boecker A, Daeschler SC, Kneser U, et al. Relevance and recent developments of chitosan in peripheral nerve surgery. Front Cell Neurosci, 2019, 13: 104. doi: 10.3389/fncel.2019.00104. |
14. | Johnson EO, Soucacos PN. Nerve repair: Experimental and clinical evaluation of biodegradable artificial nerve guides. Injury, 2008, 39: S30-S36. |
15. | Farokhi M, Mottaghitalab F, Shokrgozar MA, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62(7): 367-391. |
16. | di Summa PG, Kingham PJ, Campisi CC, et al. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett, 2014, 572: 26-31. |
17. | Inada Y, Hosoi H, Yamashita A, et al. Regeneration of peripheral motor nerve gaps with a polyglycolic acid-collagen tube: technical case report. Neurosurgery, 2007, 61(5): E1105-E1107. |
18. | Zhao Y, Liu J, Gao Y, et al. Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. J Mater Chem B, 2022, 10(10): 1582-1590. |
19. | Xu H, Holzwarth JM, Yan Y, et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 2014, 35(1): 225-235. |
20. | Sun B, Zhou Z, Li D, et al. Polypyrrole-coated poly (L-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Mater Sci Eng C Mater Biol Appl, 2019, 94: 190-199. |
21. | Stoppel WL, Ghezzi CE, McNamara SL, et al. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng, 2015, 43(3): 657-680. |
22. | Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Mater Sci Eng C Mater Biol Appl, 2016, 65: 425-332. |
23. | 刘勇, 侯春林, 林浩东, 等. 几丁糖/聚乙烯醇神经导管修复猕猴周围神经缺损的实验研究. 中国修复重建外科杂志, 2016, 25(10): 1235-1238. |
24. | Lu Q, Zhang F, Cheng W, et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration. Adv Healthc Mater, 2021, 10(14): e2100427. doi: 10.1002/adhm.202100427. |
25. | Koh HS, Yong T, Teo WE, et al. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng, 2010, 7(4): 046003. doi: 10.1002/adhm.202100427. |
26. | 蔡江瑜, 汪春阳, 范存义. 含丝素蛋白的神经导管在神经组织工程中的研究进展. 国际骨科学杂志, 2015, 36(6): 394-396, 400. |
27. | 刘经伟, 王健, 王琳. 人工神经导管原材料选择与功能设计的研究进展. 生物工程学报, 2023, 39(10): 4057-4074. |
28. | Manoukian OS, Baker JT, Rudraiah S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release, 2020, 317: 78-95. |
29. | Basu P, Maier C, Basu A. Effects of curcumin and its different formulations in preclinical and clinical studies of peripheral neuropathic and postoperative pain: A comprehensive review. Int J Mol Sci, 2021, 22(9): 4666. doi: 10.3390/ijms22094666. |
30. | Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater, 2020, 106: 54-69. |
31. | 肖雨, 翁秋燕, 邵磊, 等. 周围神经损伤后再生与修复机制研究进展. 生物化学与生物物理进展, 2022, 49(7): 1243-1250. |
32. | Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly (DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials, 2006, 27(7): 1035-1042. |
33. | Xie J, MacEwan MR, Liu W, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces, 2014, 6(12): 9472-9480. |
34. | Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643-1652. |
35. | Hu A, Zuo B, Zhang F, et al. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res, 2012, 7(15): 1171-1178. |
36. | Jiang X, Lim SH, Mao HQ, et al. Current applications and future perspectives of artificial nerve conduits. Exp Neurol, 2010, 223(1): 86-101. |
37. | Kim SM, Lee MS, Jeon J, et al. Biodegradable nerve guidance conduit with microporous and micropatterned poly (lactic-co-glycolic acid)-accelerated sciatic nerve regeneration. Macromol Biosci, 2018, 18(12): e1800290. doi: 10.1002/mabi.201800290. |
38. | Quan Q, Meng H, Chang B, et al. Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials, 2019, 207: 49-60. |
39. | Kim GB, Chen Y, Kang W, et al. The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials, 2018, 178: 504-516. |
40. | Zilic L, Garner PE, Yu T, et al. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. J Anat, 2015, 227(3): 302-314. |
41. | Zilic L, Wilshaw SP, Haycock JW. Decellularisation and histological characterisation of porcine peripheral nerves. Biotechnol Bioeng, 2016, 113(9): 2041-2053. |
42. | Zhao Y, Zhang Q, Zhao L, et al. Enhanced peripheral nerve regeneration by a high surface area to volume ratio of nerve conduits fabricated from hydroxyethyl cellulose/soy protein composite sponges. ACS Omega, 2017, 2(11): 7471-7481. |
43. | Cai S, Wu C, Yang W, et al. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 2020, 9(1): 971-989. |
44. | Kim JI, Hwang TI, Lee JC, et al. Regulating electrical cue and mechanotransduction in topological gradient structure modulated piezoelectric scaffolds to predict neural cell response. Advanced Functional Materials, 2020, 30(3): 3365. doi: 10.1002/adfm.201907330. |
45. | Gu X, Chen X, Tang X, et al. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnol Rev, 2021, 10(1): 10-19. |
46. | Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol, 2015, 131: 87-104. |
47. | Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol, 2019, 7: 337. doi: 10.3389/fbioe.2019.00337. |
48. | Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater, 2015, 41: 43-55. |
49. | Wang J, Xiong H, Zhu T, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano, 2020, 14(10): 12579-12595. |
50. | Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol, 2013, 14(8): 467-473. |
51. | Hynes RO. The extracellular matrix: not just pretty fibrils. Science, 2009, 326(5957): 1216-1219. |
52. | Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol, 2007, 8(3): 221-233. |
53. | Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta, 2014, 1840(8): 2506-2519. |
54. | Sheppard AM, Hamilton SK, Pearlman AL. Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development. J Neurosci, 1991, 11(12): 3928-3942. |
55. | Gu X, Ding F, Yang Y, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol, 2011, 93(2): 204-230. |
56. | Zhu N, Li MG, Guan YJ, et al. Effects of laminin blended with chitosan on axon guidance on patterned substrates. Biofabrication, 2010, 2(4): 045002. doi: 10.1088/1758-5082/2/4/045002. |
57. | Leiss M, Beckmann K, Girós A, et al. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol, 2008, 20(5): 502-507. |
58. | Matesz C, Modis L, Halasi G, et al. Extracellular matrix molecules and their possible roles in the regeneration of frog nervous system. Brain Res Bull, 2005, 66(4-6): 526-531. |
59. | Zhou G, Chen Y, Dai F, et al. Chitosan-based nerve guidance conduit with microchannels and nanofibers promotes schwann cells migration and neurite growth. Colloids Surf B Biointerfaces, 2023, 221: 112929. doi: 10.1016/j.colsurfb.2022.112929. |
60. | Jeon J, Lee MS, Lim J, et al. Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. Journal of Industrial and Engineering Chemistry, 2020, 90: 214-223. |
61. | Huang WC, Lin CC, Chiu TW, et al. 3D Gradient and linearly aligned magnetic microcapsules in nerve guidance conduits with remotely spatiotemporally controlled release to enhance peripheral nerve repair. ACS Appl Mater Interfaces, 2022, 14(41): 46188-46200. |
62. | Rosso G, Liashkovich I, Young P, et al. Schwann cells and neurite outgrowth from embryonic dorsal root ganglions are highly mechanosensitive. Nanomedicine, 2017, 13(2): 493-501. |
63. | Gu Y, Ji Y, Zhao Y, et al. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials, 2012, 33(28): 6672-6681. |
64. | Rao F, Yuan Z, Li M, et al. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells Nanomed Biotechnol, 2019, 47(1): 491-500. |
65. | Du J, Liu J, Yao S, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater, 2017, 55: 296-309. |
66. | Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface, 2012, 9(67): 202-221. |
67. | Williams LR, Danielsen N, Müller H, et al. Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. J Comp Neurol, 1987, 264(2): 284-290. |
68. | Zhang X, Zhang Z, Xiao L, et al. Natural nanofiber shuttles for transporting hydrophobic cargo into aqueous solutions. Biomacromolecules, 2020, 21(2): 1022-1030. |
69. | Zheng X, Ding Z, Cheng W, et al. Microskin-inspired injectable MSC-laden hydrogels for scarless wound healing with hair follicles. Adv Healthc Mater, 2020, 9(10): e2000041. doi: 10.1002/adhm.202000041. |
70. | Wu H, Liu S, Xiao L, et al. Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces, 2016, 8(27): 17118-17126. |
71. | Liu L, Ding Z, Yang Y, et al. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci, 2021, 9(15): 5227-5236. |
72. | Souza NM, Gonçalves MF, Ferreira LFR, et al. Revisiting the role of biologically active natural and synthetic compounds as an intervention to treat injured nerves. Mol Neurobiol, 2021, 58(10): 4980-4998. |
73. | Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci, 2002, 5 Suppl: 1046-1050. |
74. | Rich KM, Luszczynski JR, Osborne PA, et al. Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury. J Neurocytol, 1987, 16(2): 261-268. |
75. | Henderson CE, Phillips HS, Pollock RA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science, 1994, 266(5187): 1062-1064. |
76. | Carvalho CR, Costa JB, da Silva Morais A, et al. Tunable enzymatically cross-linked silk fibroin tubular conduits for guided tissue regeneration. Adv Healthc Mater, 2018, 7(17): e1800186. doi: 10.1002/adhm.201800186. |
77. | Carvalho CR, Chang W, Silva-Correia J, et al. Engineering silk fibroin-based nerve conduit with neurotrophic factors for proximal protection after peripheral nerve injury. Adv Healthc Mater, 2021, 10(2): e2000753. doi: 10.1002/adhm.202000753. |
78. | Lu S, Wang X, Lu Q, et al. Stabilization of enzymes in silk films. Biomacromolecules, 2009, 10(5): 1032-1042. |
79. | Uebersax L, Mattotti M, Papaloïzos M, et al. Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials, 2007, 28(30): 4449-4460. |
80. | Xiong Y, Zhu JX, Fang ZY, et al. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int J Nanomedicine, 2012, 7: 1977-1989. |
81. | Tang S, Zhu J, Xu Y, et al. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials, 2013, 34(29): 7086-7096. |
82. | Lin YC, Ramadan M, Hronik-Tupaj M, et al. Spatially controlled delivery of neurotrophic factors in silk fibroin-based nerve conduits for peripheral nerve repair. Ann Plast Surg, 2011, 67(2): 147-155. |
83. | Das S, Sharma M, Saharia D, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials, 2015, 62: 66-75. |
84. | Cai Y, Huang Q, Wang P, et al. Conductive hydrogel conduits with growth factor gradients for peripheral nerve repair in diabetics with non-suture tape. Adv Healthc Mater, 2022, 11(16): e2200755. doi: 10.1002/adhm.202200755. |
85. | Kashiba H, Hyon B, Senba E. Glial cell line-derived neurotrophic factor and nerve growth factor receptor mRNAs are expressed in distinct subgroups of dorsal root ganglion neurons and are differentially regulated by peripheral axotomy in the rat. Neurosci Lett, 1998, 252(2): 107-110. |
86. | Madduri S, Papaloïzos M, Gander B. Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res, 2009, 65(1): 88-97. |
87. | Madduri S, di Summa P, Papaloïzos M, et al. Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats. Biomaterials, 2010, 31(32): 8402-8409. |
88. | Catrina S, Gander B, Madduri S. Nerve conduit scaffolds for discrete delivery of two neurotrophic factors. Eur J Pharm Biopharm, 2013, 85(1): 139-142. |
89. | Kouzehkonan GS, Kazemi NM, Adabi M, et al. Regeneration of sciatic nerve injury through nanofiber neural guidance channels containing collagen hydrogel and acetyl L carnitine: An in vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2023, 38(1): 41-57. |
90. | Jin XH, Fang JQ, Wang JG, et al. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J Mater Chem B, 2022, 10(42): 8771-8784. |
91. | Liu YJ, Chen XF, Zhou LP, et al. A nerve conduit filled with Wnt5a-loaded fibrin hydrogels promotes peripheral nerve regeneration. CNS Neurosci Ther, 2022, 28(1): 145-157. |
92. | Yang L, Ren Z, Liu Z, et al. Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury. J Tissue Eng Regen Med, 2022, 16(9): 836-849. |
93. | Arrieta Ó, Hernández-Pedro N, Fernández-González-Aragón MC, et al. Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology, 2011, 77(10): 987-995. |
94. | Kim JH, Choi YJ, Park HI, et al. The effect of FK506 (tacrolimus) loaded with collagen membrane and fibrin glue on promotion of nerve regeneration in a rat sciatic nerve traction injury model. Maxillofac Plast Reconstr Surg, 2022, 44(1): 14. doi: 10.1186/s40902-022-00339-5. |
95. | Ding T, Zhu C, Yin JB, et al. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci, 2015, 122: 92-99. |
96. | Chen X, Ge X, Qian Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration. Advanced Functional Materials, 2020, 30(38): 2004537. doi: 10.1002/adfm.202004537. |
97. | Haidar MK, Timur SS, Demirbolat GM, et al. Electrospun nanofibers for dual and local delivery of neuroprotective drugs. Fibers and Polymers, 2021, 22(2): 334-344. |
98. | Ebrahimi-Zadehlou P, Najafpour A, Mohammadi R. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: a transected sciatic nerve model in rat. Neurol Res, 2021, 43(2): 148-156. |
- 1. 刘彤, 闫晓静, 陈超. 丝素蛋白纳米纤维的研究进展. 纺织报告, 2022, 41(10): 22-24.
- 2. 邵正中, 舒雄, 管娟. 丝蛋白应用于骨软骨损伤修复的研究进展与展望. 骨科临床与研究杂志, 2023, 8(5): 306-309.
- 3. 王波, 刘滨璐, 苏卫东, 等. 丝素蛋白基组织工程支架材料的研究进展. 上海纺织科技, 2023, 51(12): 1-6, 56.
- 4. Sarker MD, Naghieh S, McInnes AD, et al. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol, 2018, 171: 125-150.
- 5. Noble J, Munro CA, Prasad VS, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998, 45(1): 116-122.
- 6. Junggeon P, Jin J, Byongyeon K, et al. Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Advanced Functional Materials, 2020, 30(39): 2003759.1-2003759.14.
- 7. Li R, Liu Z, Pan Y, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys, 2014, 68(3): 449-454.
- 8. Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol, 2019, 319: 112761. doi: 10.1016/j.expneurol.2018.05.016.
- 9. 刘晓琳, 王金武, 戴尅戎, 等. 神经肌肉电刺激治疗周围神经损伤的研究进展. 中国修复重建外科杂志, 2010, 24(5): 622-627.
- 10. Zhang J, Liu D, Zhou G, et al. Application of nanomaterials in tissue engineering. Progress in Chemistry, 2010, 22(11): 2232-2237.
- 11. Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol, 2010, 92(3): 245-276.
- 12. Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol, 2010, 223(1): 77-85.
- 13. Boecker A, Daeschler SC, Kneser U, et al. Relevance and recent developments of chitosan in peripheral nerve surgery. Front Cell Neurosci, 2019, 13: 104. doi: 10.3389/fncel.2019.00104.
- 14. Johnson EO, Soucacos PN. Nerve repair: Experimental and clinical evaluation of biodegradable artificial nerve guides. Injury, 2008, 39: S30-S36.
- 15. Farokhi M, Mottaghitalab F, Shokrgozar MA, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62(7): 367-391.
- 16. di Summa PG, Kingham PJ, Campisi CC, et al. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. Neurosci Lett, 2014, 572: 26-31.
- 17. Inada Y, Hosoi H, Yamashita A, et al. Regeneration of peripheral motor nerve gaps with a polyglycolic acid-collagen tube: technical case report. Neurosurgery, 2007, 61(5): E1105-E1107.
- 18. Zhao Y, Liu J, Gao Y, et al. Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. J Mater Chem B, 2022, 10(10): 1582-1590.
- 19. Xu H, Holzwarth JM, Yan Y, et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 2014, 35(1): 225-235.
- 20. Sun B, Zhou Z, Li D, et al. Polypyrrole-coated poly (L-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Mater Sci Eng C Mater Biol Appl, 2019, 94: 190-199.
- 21. Stoppel WL, Ghezzi CE, McNamara SL, et al. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng, 2015, 43(3): 657-680.
- 22. Dalamagkas K, Tsintou M, Seifalian A. Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Mater Sci Eng C Mater Biol Appl, 2016, 65: 425-332.
- 23. 刘勇, 侯春林, 林浩东, 等. 几丁糖/聚乙烯醇神经导管修复猕猴周围神经缺损的实验研究. 中国修复重建外科杂志, 2016, 25(10): 1235-1238.
- 24. Lu Q, Zhang F, Cheng W, et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration. Adv Healthc Mater, 2021, 10(14): e2100427. doi: 10.1002/adhm.202100427.
- 25. Koh HS, Yong T, Teo WE, et al. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng, 2010, 7(4): 046003. doi: 10.1002/adhm.202100427.
- 26. 蔡江瑜, 汪春阳, 范存义. 含丝素蛋白的神经导管在神经组织工程中的研究进展. 国际骨科学杂志, 2015, 36(6): 394-396, 400.
- 27. 刘经伟, 王健, 王琳. 人工神经导管原材料选择与功能设计的研究进展. 生物工程学报, 2023, 39(10): 4057-4074.
- 28. Manoukian OS, Baker JT, Rudraiah S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release, 2020, 317: 78-95.
- 29. Basu P, Maier C, Basu A. Effects of curcumin and its different formulations in preclinical and clinical studies of peripheral neuropathic and postoperative pain: A comprehensive review. Int J Mol Sci, 2021, 22(9): 4666. doi: 10.3390/ijms22094666.
- 30. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater, 2020, 106: 54-69.
- 31. 肖雨, 翁秋燕, 邵磊, 等. 周围神经损伤后再生与修复机制研究进展. 生物化学与生物物理进展, 2022, 49(7): 1243-1250.
- 32. Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly (DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials, 2006, 27(7): 1035-1042.
- 33. Xie J, MacEwan MR, Liu W, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces, 2014, 6(12): 9472-9480.
- 34. Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643-1652.
- 35. Hu A, Zuo B, Zhang F, et al. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res, 2012, 7(15): 1171-1178.
- 36. Jiang X, Lim SH, Mao HQ, et al. Current applications and future perspectives of artificial nerve conduits. Exp Neurol, 2010, 223(1): 86-101.
- 37. Kim SM, Lee MS, Jeon J, et al. Biodegradable nerve guidance conduit with microporous and micropatterned poly (lactic-co-glycolic acid)-accelerated sciatic nerve regeneration. Macromol Biosci, 2018, 18(12): e1800290. doi: 10.1002/mabi.201800290.
- 38. Quan Q, Meng H, Chang B, et al. Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials, 2019, 207: 49-60.
- 39. Kim GB, Chen Y, Kang W, et al. The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials, 2018, 178: 504-516.
- 40. Zilic L, Garner PE, Yu T, et al. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. J Anat, 2015, 227(3): 302-314.
- 41. Zilic L, Wilshaw SP, Haycock JW. Decellularisation and histological characterisation of porcine peripheral nerves. Biotechnol Bioeng, 2016, 113(9): 2041-2053.
- 42. Zhao Y, Zhang Q, Zhao L, et al. Enhanced peripheral nerve regeneration by a high surface area to volume ratio of nerve conduits fabricated from hydroxyethyl cellulose/soy protein composite sponges. ACS Omega, 2017, 2(11): 7471-7481.
- 43. Cai S, Wu C, Yang W, et al. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews, 2020, 9(1): 971-989.
- 44. Kim JI, Hwang TI, Lee JC, et al. Regulating electrical cue and mechanotransduction in topological gradient structure modulated piezoelectric scaffolds to predict neural cell response. Advanced Functional Materials, 2020, 30(3): 3365. doi: 10.1002/adfm.201907330.
- 45. Gu X, Chen X, Tang X, et al. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnol Rev, 2021, 10(1): 10-19.
- 46. Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol, 2015, 131: 87-104.
- 47. Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol, 2019, 7: 337. doi: 10.3389/fbioe.2019.00337.
- 48. Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater, 2015, 41: 43-55.
- 49. Wang J, Xiong H, Zhu T, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano, 2020, 14(10): 12579-12595.
- 50. Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol, 2013, 14(8): 467-473.
- 51. Hynes RO. The extracellular matrix: not just pretty fibrils. Science, 2009, 326(5957): 1216-1219.
- 52. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol, 2007, 8(3): 221-233.
- 53. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta, 2014, 1840(8): 2506-2519.
- 54. Sheppard AM, Hamilton SK, Pearlman AL. Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development. J Neurosci, 1991, 11(12): 3928-3942.
- 55. Gu X, Ding F, Yang Y, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol, 2011, 93(2): 204-230.
- 56. Zhu N, Li MG, Guan YJ, et al. Effects of laminin blended with chitosan on axon guidance on patterned substrates. Biofabrication, 2010, 2(4): 045002. doi: 10.1088/1758-5082/2/4/045002.
- 57. Leiss M, Beckmann K, Girós A, et al. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol, 2008, 20(5): 502-507.
- 58. Matesz C, Modis L, Halasi G, et al. Extracellular matrix molecules and their possible roles in the regeneration of frog nervous system. Brain Res Bull, 2005, 66(4-6): 526-531.
- 59. Zhou G, Chen Y, Dai F, et al. Chitosan-based nerve guidance conduit with microchannels and nanofibers promotes schwann cells migration and neurite growth. Colloids Surf B Biointerfaces, 2023, 221: 112929. doi: 10.1016/j.colsurfb.2022.112929.
- 60. Jeon J, Lee MS, Lim J, et al. Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. Journal of Industrial and Engineering Chemistry, 2020, 90: 214-223.
- 61. Huang WC, Lin CC, Chiu TW, et al. 3D Gradient and linearly aligned magnetic microcapsules in nerve guidance conduits with remotely spatiotemporally controlled release to enhance peripheral nerve repair. ACS Appl Mater Interfaces, 2022, 14(41): 46188-46200.
- 62. Rosso G, Liashkovich I, Young P, et al. Schwann cells and neurite outgrowth from embryonic dorsal root ganglions are highly mechanosensitive. Nanomedicine, 2017, 13(2): 493-501.
- 63. Gu Y, Ji Y, Zhao Y, et al. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials, 2012, 33(28): 6672-6681.
- 64. Rao F, Yuan Z, Li M, et al. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells Nanomed Biotechnol, 2019, 47(1): 491-500.
- 65. Du J, Liu J, Yao S, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater, 2017, 55: 296-309.
- 66. Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface, 2012, 9(67): 202-221.
- 67. Williams LR, Danielsen N, Müller H, et al. Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. J Comp Neurol, 1987, 264(2): 284-290.
- 68. Zhang X, Zhang Z, Xiao L, et al. Natural nanofiber shuttles for transporting hydrophobic cargo into aqueous solutions. Biomacromolecules, 2020, 21(2): 1022-1030.
- 69. Zheng X, Ding Z, Cheng W, et al. Microskin-inspired injectable MSC-laden hydrogels for scarless wound healing with hair follicles. Adv Healthc Mater, 2020, 9(10): e2000041. doi: 10.1002/adhm.202000041.
- 70. Wu H, Liu S, Xiao L, et al. Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces, 2016, 8(27): 17118-17126.
- 71. Liu L, Ding Z, Yang Y, et al. Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration. Biomater Sci, 2021, 9(15): 5227-5236.
- 72. Souza NM, Gonçalves MF, Ferreira LFR, et al. Revisiting the role of biologically active natural and synthetic compounds as an intervention to treat injured nerves. Mol Neurobiol, 2021, 58(10): 4980-4998.
- 73. Thoenen H, Sendtner M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci, 2002, 5 Suppl: 1046-1050.
- 74. Rich KM, Luszczynski JR, Osborne PA, et al. Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury. J Neurocytol, 1987, 16(2): 261-268.
- 75. Henderson CE, Phillips HS, Pollock RA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science, 1994, 266(5187): 1062-1064.
- 76. Carvalho CR, Costa JB, da Silva Morais A, et al. Tunable enzymatically cross-linked silk fibroin tubular conduits for guided tissue regeneration. Adv Healthc Mater, 2018, 7(17): e1800186. doi: 10.1002/adhm.201800186.
- 77. Carvalho CR, Chang W, Silva-Correia J, et al. Engineering silk fibroin-based nerve conduit with neurotrophic factors for proximal protection after peripheral nerve injury. Adv Healthc Mater, 2021, 10(2): e2000753. doi: 10.1002/adhm.202000753.
- 78. Lu S, Wang X, Lu Q, et al. Stabilization of enzymes in silk films. Biomacromolecules, 2009, 10(5): 1032-1042.
- 79. Uebersax L, Mattotti M, Papaloïzos M, et al. Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials, 2007, 28(30): 4449-4460.
- 80. Xiong Y, Zhu JX, Fang ZY, et al. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int J Nanomedicine, 2012, 7: 1977-1989.
- 81. Tang S, Zhu J, Xu Y, et al. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials, 2013, 34(29): 7086-7096.
- 82. Lin YC, Ramadan M, Hronik-Tupaj M, et al. Spatially controlled delivery of neurotrophic factors in silk fibroin-based nerve conduits for peripheral nerve repair. Ann Plast Surg, 2011, 67(2): 147-155.
- 83. Das S, Sharma M, Saharia D, et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials, 2015, 62: 66-75.
- 84. Cai Y, Huang Q, Wang P, et al. Conductive hydrogel conduits with growth factor gradients for peripheral nerve repair in diabetics with non-suture tape. Adv Healthc Mater, 2022, 11(16): e2200755. doi: 10.1002/adhm.202200755.
- 85. Kashiba H, Hyon B, Senba E. Glial cell line-derived neurotrophic factor and nerve growth factor receptor mRNAs are expressed in distinct subgroups of dorsal root ganglion neurons and are differentially regulated by peripheral axotomy in the rat. Neurosci Lett, 1998, 252(2): 107-110.
- 86. Madduri S, Papaloïzos M, Gander B. Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res, 2009, 65(1): 88-97.
- 87. Madduri S, di Summa P, Papaloïzos M, et al. Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats. Biomaterials, 2010, 31(32): 8402-8409.
- 88. Catrina S, Gander B, Madduri S. Nerve conduit scaffolds for discrete delivery of two neurotrophic factors. Eur J Pharm Biopharm, 2013, 85(1): 139-142.
- 89. Kouzehkonan GS, Kazemi NM, Adabi M, et al. Regeneration of sciatic nerve injury through nanofiber neural guidance channels containing collagen hydrogel and acetyl L carnitine: An in vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2023, 38(1): 41-57.
- 90. Jin XH, Fang JQ, Wang JG, et al. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J Mater Chem B, 2022, 10(42): 8771-8784.
- 91. Liu YJ, Chen XF, Zhou LP, et al. A nerve conduit filled with Wnt5a-loaded fibrin hydrogels promotes peripheral nerve regeneration. CNS Neurosci Ther, 2022, 28(1): 145-157.
- 92. Yang L, Ren Z, Liu Z, et al. Curcumin slow-release membrane promotes erectile function and penile rehabilitation in a rat model of cavernous nerve injury. J Tissue Eng Regen Med, 2022, 16(9): 836-849.
- 93. Arrieta Ó, Hernández-Pedro N, Fernández-González-Aragón MC, et al. Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer. Neurology, 2011, 77(10): 987-995.
- 94. Kim JH, Choi YJ, Park HI, et al. The effect of FK506 (tacrolimus) loaded with collagen membrane and fibrin glue on promotion of nerve regeneration in a rat sciatic nerve traction injury model. Maxillofac Plast Reconstr Surg, 2022, 44(1): 14. doi: 10.1186/s40902-022-00339-5.
- 95. Ding T, Zhu C, Yin JB, et al. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci, 2015, 122: 92-99.
- 96. Chen X, Ge X, Qian Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration. Advanced Functional Materials, 2020, 30(38): 2004537. doi: 10.1002/adfm.202004537.
- 97. Haidar MK, Timur SS, Demirbolat GM, et al. Electrospun nanofibers for dual and local delivery of neuroprotective drugs. Fibers and Polymers, 2021, 22(2): 334-344.
- 98. Ebrahimi-Zadehlou P, Najafpour A, Mohammadi R. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: a transected sciatic nerve model in rat. Neurol Res, 2021, 43(2): 148-156.