- 1. Department of Orthopaedics, General Hospital of Central Theater Command of Chinese PLA, Wuhan Hubei, 430070, P. R. China;
- 2. The First School of Clinical Medicine, Southern Medical University, Guangzhou Guangdong, 510515, P. R. China;
Citation: LI Xiaobo, LI Hanlin, LU Jiajun, DING Ran. Research progress of femoral bone tunnel positioning in anterior cruciate ligament reconstruction. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(4): 498-504. doi: 10.7507/1002-1892.202401121 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Freshman RD, Truong NM, Cevallos N, et al. Delayed ACL reconstruction increases rates of concomitant procedures and risk of subsequent surgery. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2897-2905. |
2. | Freshman RD, Truong NM, Cevallos N, et al. Delayed ACL reconstruction increases rates of concomitant procedures and risk of subsequent surgery. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2897-2905. |
3. | Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res, 2022, 40(1): 55-64. |
4. | Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res, 2022, 40(1): 55-64. |
5. | Vermeijden HD, Yang XA, van der List JP, et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3666-3675. |
6. | Vermeijden HD, Yang XA, van der List JP, et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3666-3675. |
7. | Crotti M, Heering T, Lander N, et al. Extrinsic risk factors for primary noncontact anterior cruciate ligament injury in adolescents aged between 14 and 18 years: A systematic review. Sports Med, 2024. doi: 10.1007/s40279-023-01975-1. |
8. | Crotti M, Heering T, Lander N, et al. Extrinsic risk factors for primary noncontact anterior cruciate ligament injury in adolescents aged between 14 and 18 years: A systematic review. Sports Med, 2024. doi: 10.1007/s40279-023-01975-1. |
9. | Artmann M, Wirth CJ. Investigation of the appropriate functional replacement of the anterior cruciate ligament (author’s transl). Z Orthop Ihre Grenzgeb, 1974, 112(1): 160-165. |
10. | Artmann M, Wirth CJ. Investigation of the appropriate functional replacement of the anterior cruciate ligament (author’s transl). Z Orthop Ihre Grenzgeb, 1974, 112(1): 160-165. |
11. | Hefzy MS, Grood ES, Noyes FR. Factors affecting the region of most isometric femoral attachments. Part Ⅱ: The anterior cruciate ligament. Am J Sports Med, 1989, 17(2): 208-216. |
12. | Hefzy MS, Grood ES, Noyes FR. Factors affecting the region of most isometric femoral attachments. Part Ⅱ: The anterior cruciate ligament. Am J Sports Med, 1989, 17(2): 208-216. |
13. | Beynnon BD, Uh BS, Johnson RJ, et al. The elongation behavior of the anterior cruciate ligament graft in vivo. A long-term follow-up study. Am J Sports Med, 2001, 29(2): 161-166. |
14. | Beynnon BD, Uh BS, Johnson RJ, et al. The elongation behavior of the anterior cruciate ligament graft in vivo. A long-term follow-up study. Am J Sports Med, 2001, 29(2): 161-166. |
15. | Musahl V, Plakseychuk A, VanScyoc A, et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament reconstructed knee. Am J Sports Med, 2005, 33(5): 712-718. |
16. | Musahl V, Plakseychuk A, VanScyoc A, et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament reconstructed knee. Am J Sports Med, 2005, 33(5): 712-718. |
17. | Markolf KL, Burchfield DM, Shapiro MM, et al. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part Ⅰ: insertion of the graft and anterior-posterior testing. J Bone Joint Surg (Am), 1996, 78(11): 1720-1727. |
18. | Markolf KL, Burchfield DM, Shapiro MM, et al. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. J Bone Joint Surg (Am), 1996, 78(11): 1720-1727. |
19. | Vignos MF, Smith CR, Roth JD, et al. Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery. Am J Sports Med, 2020, 48(14): 3503-3514. |
20. | Vignos MF, Smith CR, Roth JD, et al. Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery. Am J Sports Med, 2020, 48(14): 3503-3514. |
21. | Schindler OS. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc, 2012, 20(1): 5-47. |
22. | Schindler OS. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc, 2012, 20(1): 5-47. |
23. | Śmigielski R, Zdanowicz U, Drwięga M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3143-3150. |
24. | Śmigielski R, Zdanowicz U, Drwięga M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3143-3150. |
25. | Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 982-992. |
26. | Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 982-992. |
27. | Śmigielski R, Zdanowicz U, Drwięga M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J, 2016, 98-B(8): 1020-1026. |
28. | Śmigielski R, Zdanowicz U, Drwięga M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J, 2016, 98-B(8): 1020-1026. |
29. | Petersen W, Forkel P, Achtnich A, et al. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg, 2013, 133(6): 827-833. |
30. | Petersen W, Forkel P, Achtnich A, et al. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg, 2013, 133(6): 827-833. |
31. | Wen Z, Zhang H, Yan W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2245-2254. |
32. | Wen Z, Zhang H, Yan W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2245-2254. |
33. | Zhang J, Hu X, Liu Z, et al. Anatomical single bundle anterior cruciate ligament reconstruction with rounded rectangle tibial tunnel and oval femoral tunnel: a prospective comparative study versus conventional surgery. Am J Transl Res, 2019, 11(3): 1908-1918. |
34. | Zhang J, Hu X, Liu Z, et al. Anatomical single bundle anterior cruciate ligament reconstruction with rounded rectangle tibial tunnel and oval femoral tunnel: a prospective comparative study versus conventional surgery. Am J Transl Res, 2019, 11(3): 1908-1918. |
35. | Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop (Belle Mead NJ), 2015, 44(6): 253-258. |
36. | Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop (Belle Mead NJ), 2015, 44(6): 253-258. |
37. | 史尉利, 马勇, 孟庆阳, 等. 后软骨缘顶点辅助定位器进行前交叉韧带I.D.E.A.L股骨骨道定位 . 中国运动医学杂志, 2021, 40(8): 595-600. |
38. | 史尉利, 马勇, 孟庆阳, 等. 后软骨缘顶点辅助定位器进行前交叉韧带I.D.E.A.L股骨骨道定位 . 中国运动医学杂志, 2021, 40(8): 595-600. |
39. | Su C, Kuang SD, Liu WJ, et al. Clinical outcome of remnant-preserving and I.D.E.A.L. femoral tunnel technique for anterior cruciate ligament reconstruction. Orthop Surg, 2020, 12(6): 1693-1702. |
40. | Su C, Kuang SD, Liu WJ, et al. Clinical outcome of remnant-preserving and I.D.E.A.L. femoral tunnel technique for anterior cruciate ligament reconstruction. Orthop Surg, 2020, 12(6): 1693-1702. |
41. | 韦继南, 常青, 李永刚, 等. 两种股骨隧道定位方法对前交叉韧带重建术后功能康复的影响. 东南大学学报 (医学版), 2022, 41(6): 806-811. |
42. | 韦继南, 常青, 李永刚, 等. 两种股骨隧道定位方法对前交叉韧带重建术后功能康复的影响. 东南大学学报 (医学版), 2022, 41(6): 806-811. |
43. | 周天平, 徐一宏, 徐卫东. 前交叉韧带重建股骨骨隧道定位的理论依据及演变. 中华关节外科杂志 (电子版), 2022, 16(1): 79-85. |
44. | 周天平, 徐一宏, 徐卫东. 前交叉韧带重建股骨骨隧道定位的理论依据及演变. 中华关节外科杂志 (电子版), 2022, 16(1): 79-85. |
45. | Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg, 2012, 25(5): 361-368. |
46. | Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg, 2012, 25(5): 361-368. |
47. | Höher J, Livesay GA, Ma CB, et al. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc, 1999, 7(4): 215-219. |
48. | Höher J, Livesay GA, Ma CB, et al. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc, 1999, 7(4): 215-219. |
49. | Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc, 1998, 6(4): 231-240. |
50. | Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc, 1998, 6(4): 231-240. |
51. | Rodeo SA, Kawamura S, Kim HJ, et al. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med, 2006, 34(11): 1790-1800. |
52. | Rodeo SA, Kawamura S, Kim HJ, et al. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med, 2006, 34(11): 1790-1800. |
53. | Wan F, Chen T, Ge Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthop J Sports Med, 2019, 7(12): 2325967119890382. doi: 10.1177/2325967119890382. |
54. | Wan F, Chen T, Ge Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthop J Sports Med, 2019, 7(12): 2325967119890382. doi: 10.1177/2325967119890382. |
55. | Mitsou A, Vallianatos P, Piskopakis N, et al. Anterior cruciate ligament reconstruction by over-the-top repair combined with popliteus tendon plasty. J Bone Joint Surg (Br), 1990, 72(3): 398-404. |
56. | Mitsou A, Vallianatos P, Piskopakis N, et al. Anterior cruciate ligament reconstruction by over-the-top repair combined with popliteus tendon plasty. J Bone Joint Surg (Br), 1990, 72(3): 398-404. |
57. | Jonsson H, Elmqvist LG, Kärrholm J, et al. Over-the-top or tunnel reconstruction of the anterior cruciate ligament? A prospective randomised study of 54 patients. J Bone Joint Surg (Br), 1994, 76(1): 82-87. |
58. | Jonsson H, Elmqvist LG, Kärrholm J, et al. Over-the-top or tunnel reconstruction of the anterior cruciate ligament? A prospective randomised study of 54 patients. J Bone Joint Surg (Br), 1994, 76(1): 82-87. |
59. | Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med, 1994, 22(1): 48-54. |
60. | Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med, 1994, 22(1): 48-54. |
61. | Lo IK, Kirkley A, Fowler PJ, et al. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Arthroscopy, 1997, 13(5): 627-634. |
62. | Lo IK, Kirkley A, Fowler PJ, et al. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Arthroscopy, 1997, 13(5): 627-634. |
63. | Usman MA, Kamei G, Adachi N, et al. Revision single-bundle anterior cruciate ligament reconstruction with over-the-top route procedure. Orthop Traumatol Surg Res, 2015, 101(1): 71-75. |
64. | Usman MA, Kamei G, Adachi N, et al. Revision single-bundle anterior cruciate ligament reconstruction with over-the-top route procedure. Orthop Traumatol Surg Res, 2015, 101(1): 71-75. |
65. | Sarraj M, de Sa D, Shanmugaraj A, et al. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 427-444. |
66. | Sarraj M, de Sa D, Shanmugaraj A, et al. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 427-444. |
67. | Nagai K, Rothrauff BB, Li RT, et al. Over-the-top ACL reconstruction restores anterior and rotatory knee laxity in skeletally immature individuals and revision settings. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 538-543. |
68. | Nagai K, Rothrauff BB, Li RT, et al. Over-the-top ACL reconstruction restores anterior and rotatory knee laxity in skeletally immature individuals and revision settings. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 538-543. |
69. | Samitier G, Marcano AI, Alentorn-Geli E, et al. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg, 2015, 3(4): 220-240. |
70. | Samitier G, Marcano AI, Alentorn-Geli E, et al. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg, 2015, 3(4): 220-240. |
71. | Loh JC, Fukuda Y, Tsuda E, et al. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy, 2003, 19(3): 297-304. |
72. | Loh JC, Fukuda Y, Tsuda E, et al. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy, 2003, 19(3): 297-304. |
73. | Han Y, Hart A, Martineau PA. Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthroscopy, 2014, 30(7): 849-855. |
74. | Han Y, Hart A, Martineau PA. Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthroscopy, 2014, 30(7): 849-855. |
75. | Miller MD. Editorial commentary: Does anybody really know what time it is? Does anybody really care? Arthroscopy, 2017, 33(2): 398-399. |
76. | Miller MD. Editorial commentary: Does anybody really know what time it is? Does anybody really care? Arthroscopy, 2017, 33(2): 398-399. |
77. | Fu FH. The clock-face reference: simple but nonanatomic. Arthroscopy, 2008, 24(12): 1433, author reply 1434. doi: 10.1016/j.arthro.2008.09.003. |
78. | Fu FH. The clock-face reference: simple but nonanatomic. Arthroscopy, 2008, 24(12): 1433, author reply 1434. doi: 10.1016/j.arthro.2008.09.003. |
79. | Mehta V, Petsche T, Rawal AM. Inter- and intrarater reliability of the femoral tunnel clock-face grading system during anterior cruciate ligament reconstruction. Arthroscopy, 2017, 33(2): 394-397. |
80. | Mehta V, Petsche T, Rawal AM. Inter- and intrarater reliability of the femoral tunnel clock-face grading system during anterior cruciate ligament reconstruction. Arthroscopy, 2017, 33(2): 394-397. |
81. | Siebold R, Ellert T, Metz S, et al. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy, 2008, 24(5): 585-592. |
82. | Siebold R, Ellert T, Metz S, et al. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy, 2008, 24(5): 585-592. |
83. | Hutchinson MR, Ash SA. Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy, 2003, 19(9): 931-935. |
84. | Hutchinson MR, Ash SA. Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy, 2003, 19(9): 931-935. |
85. | Shino K, Suzuki T, Iwahashi T, et al. The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1164-1168. |
86. | Shino K, Suzuki T, Iwahashi T, et al. The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1164-1168. |
87. | Bhattacharyya R, Ker A, Fogg Q, et al. Lateral intercondylar ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study. Int J Surg, 2018, 50: 55-59. |
88. | Bhattacharyya R, Ker A, Fogg Q, et al. Lateral intercondylar ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study. Int J Surg, 2018, 50: 55-59. |
89. | Hart A, Han Y, Martineau PA. The apex of the deep cartilage: A landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy, 2015, 31(9): 1777-1783. |
90. | Hart A, Han Y, Martineau PA. The apex of the deep cartilage: A landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy, 2015, 31(9): 1777-1783. |
91. | Shi W, Zhang J, Meng Q, et al. The apex of the deep cartilage is a stable landmark to evaluate the femoral tunnel position in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2023, 31(1): 256-263. |
92. | Shi W, Zhang J, Meng Q, et al. The apex of the deep cartilage is a stable landmark to evaluate the femoral tunnel position in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2023, 31(1): 256-263. |
93. | Tsukada S, Fujishiro H, Watanabe K, et al. Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med, 2014, 42(5): 1110-1117. |
94. | Tsukada S, Fujishiro H, Watanabe K, et al. Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med, 2014, 42(5): 1110-1117. |
95. | Masuda T, Kondo E, Onodera J, et al. Effects of remnant tissue preservation on tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction using the hamstring tendon. Orthop J Sports Med, 2018, 6(12): 2325967118811293. doi: 10.1177/2325967118811293. |
96. | Masuda T, Kondo E, Onodera J, et al. Effects of remnant tissue preservation on tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction using the hamstring tendon. Orthop J Sports Med, 2018, 6(12): 2325967118811293. doi: 10.1177/2325967118811293. |
97. | Takahashi T, Kimura M, Hagiwara K, et al. The effect of remnant tissue preservation in anatomic double-bundle ACL reconstruction on knee stability and graft maturation. J Knee Surg, 2019, 32(6): 565-576. |
98. | Takahashi T, Kimura M, Hagiwara K, et al. The effect of remnant tissue preservation in anatomic double-bundle ACL reconstruction on knee stability and graft maturation. J Knee Surg, 2019, 32(6): 565-576. |
99. | Bernard M, Hertel P, Hornung H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg, 1997, 10(1): 14-22. |
100. | Bernard M, Hertel P, Hornung H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg, 1997, 10(1): 14-22. |
101. | Colombet P, Robinson J, Christel P, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy, 2006, 22(9): 984-992. |
102. | Colombet P, Robinson J, Christel P, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy, 2006, 22(9): 984-992. |
103. | Dessenne V, Lavallée S, Julliard R, et al. Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg, 1995, 1(1): 59-64. |
104. | Dessenne V, Lavallée S, Julliard R, et al. Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg, 1995, 1(1): 59-64. |
105. | Cheng T, Liu T, Zhang G, et al. Computer-navigated surgery in anterior cruciate ligament reconstruction: are radiographic outcomes better than conventional surgery? Arthroscopy, 2011, 27(1): 97-100. |
106. | Cheng T, Liu T, Zhang G, et al. Computer-navigated surgery in anterior cruciate ligament reconstruction: are radiographic outcomes better than conventional surgery? Arthroscopy, 2011, 27(1): 97-100. |
107. | 邱洪九. 计算机导航辅助前交叉韧带重建术的临床研究. 重庆: 陆军军医大学, 2020. |
108. | 邱洪九. 计算机导航辅助前交叉韧带重建术的临床研究. 重庆: 陆军军医大学, 2020. |
109. | 关彦齐, 王芳芳. 增材制造 (3D打印) 铸造的发展与应用. 科技创新与应用, 2020(21): 110-111. |
110. | 关彦齐, 王芳芳. 增材制造 (3D打印) 铸造的发展与应用. 科技创新与应用, 2020(21): 110-111. |
111. | Rankin I, Rehman H, Frame M. 3D-printed patient-specific ACL femoral tunnel guide from MRI. Open Orthop J, 2018, 12: 59-68. |
112. | Rankin I, Rehman H, Frame M. 3D-printed patient-specific ACL femoral tunnel guide from MRI. Open Orthop J, 2018, 12: 59-68. |
113. | 罗树林, 黄雨亭, 戴工华, 等. 3D打印技术在膝前交叉韧带重建中的应用. 体育科研, 2019, 40(1): 86-89. |
114. | 罗树林, 黄雨亭, 戴工华, 等. 3D打印技术在膝前交叉韧带重建中的应用. 体育科研, 2019, 40(1): 86-89. |
- 1. Freshman RD, Truong NM, Cevallos N, et al. Delayed ACL reconstruction increases rates of concomitant procedures and risk of subsequent surgery. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2897-2905.
- 2. Freshman RD, Truong NM, Cevallos N, et al. Delayed ACL reconstruction increases rates of concomitant procedures and risk of subsequent surgery. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2897-2905.
- 3. Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res, 2022, 40(1): 55-64.
- 4. Chu CR. Can we afford to ignore the biology of joint healing and graft incorporation after ACL reconstruction? J Orthop Res, 2022, 40(1): 55-64.
- 5. Vermeijden HD, Yang XA, van der List JP, et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3666-3675.
- 6. Vermeijden HD, Yang XA, van der List JP, et al. Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2020, 28(11): 3666-3675.
- 7. Crotti M, Heering T, Lander N, et al. Extrinsic risk factors for primary noncontact anterior cruciate ligament injury in adolescents aged between 14 and 18 years: A systematic review. Sports Med, 2024. doi: 10.1007/s40279-023-01975-1.
- 8. Crotti M, Heering T, Lander N, et al. Extrinsic risk factors for primary noncontact anterior cruciate ligament injury in adolescents aged between 14 and 18 years: A systematic review. Sports Med, 2024. doi: 10.1007/s40279-023-01975-1.
- 9. Artmann M, Wirth CJ. Investigation of the appropriate functional replacement of the anterior cruciate ligament (author’s transl). Z Orthop Ihre Grenzgeb, 1974, 112(1): 160-165.
- 10. Artmann M, Wirth CJ. Investigation of the appropriate functional replacement of the anterior cruciate ligament (author’s transl). Z Orthop Ihre Grenzgeb, 1974, 112(1): 160-165.
- 11. Hefzy MS, Grood ES, Noyes FR. Factors affecting the region of most isometric femoral attachments. Part Ⅱ: The anterior cruciate ligament. Am J Sports Med, 1989, 17(2): 208-216.
- 12. Hefzy MS, Grood ES, Noyes FR. Factors affecting the region of most isometric femoral attachments. Part Ⅱ: The anterior cruciate ligament. Am J Sports Med, 1989, 17(2): 208-216.
- 13. Beynnon BD, Uh BS, Johnson RJ, et al. The elongation behavior of the anterior cruciate ligament graft in vivo. A long-term follow-up study. Am J Sports Med, 2001, 29(2): 161-166.
- 14. Beynnon BD, Uh BS, Johnson RJ, et al. The elongation behavior of the anterior cruciate ligament graft in vivo. A long-term follow-up study. Am J Sports Med, 2001, 29(2): 161-166.
- 15. Musahl V, Plakseychuk A, VanScyoc A, et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament reconstructed knee. Am J Sports Med, 2005, 33(5): 712-718.
- 16. Musahl V, Plakseychuk A, VanScyoc A, et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament reconstructed knee. Am J Sports Med, 2005, 33(5): 712-718.
- 17. Markolf KL, Burchfield DM, Shapiro MM, et al. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part Ⅰ: insertion of the graft and anterior-posterior testing. J Bone Joint Surg (Am), 1996, 78(11): 1720-1727.
- 18. Markolf KL, Burchfield DM, Shapiro MM, et al. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. J Bone Joint Surg (Am), 1996, 78(11): 1720-1727.
- 19. Vignos MF, Smith CR, Roth JD, et al. Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery. Am J Sports Med, 2020, 48(14): 3503-3514.
- 20. Vignos MF, Smith CR, Roth JD, et al. Anterior cruciate ligament graft tunnel placement and graft angle are primary determinants of internal knee mechanics after reconstructive surgery. Am J Sports Med, 2020, 48(14): 3503-3514.
- 21. Schindler OS. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc, 2012, 20(1): 5-47.
- 22. Schindler OS. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc, 2012, 20(1): 5-47.
- 23. Śmigielski R, Zdanowicz U, Drwięga M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3143-3150.
- 24. Śmigielski R, Zdanowicz U, Drwięga M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3143-3150.
- 25. Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 982-992.
- 26. Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc, 2006, 14(10): 982-992.
- 27. Śmigielski R, Zdanowicz U, Drwięga M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J, 2016, 98-B(8): 1020-1026.
- 28. Śmigielski R, Zdanowicz U, Drwięga M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J, 2016, 98-B(8): 1020-1026.
- 29. Petersen W, Forkel P, Achtnich A, et al. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg, 2013, 133(6): 827-833.
- 30. Petersen W, Forkel P, Achtnich A, et al. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers. Arch Orthop Trauma Surg, 2013, 133(6): 827-833.
- 31. Wen Z, Zhang H, Yan W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2245-2254.
- 32. Wen Z, Zhang H, Yan W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2245-2254.
- 33. Zhang J, Hu X, Liu Z, et al. Anatomical single bundle anterior cruciate ligament reconstruction with rounded rectangle tibial tunnel and oval femoral tunnel: a prospective comparative study versus conventional surgery. Am J Transl Res, 2019, 11(3): 1908-1918.
- 34. Zhang J, Hu X, Liu Z, et al. Anatomical single bundle anterior cruciate ligament reconstruction with rounded rectangle tibial tunnel and oval femoral tunnel: a prospective comparative study versus conventional surgery. Am J Transl Res, 2019, 11(3): 1908-1918.
- 35. Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop (Belle Mead NJ), 2015, 44(6): 253-258.
- 36. Pearle AD, McAllister D, Howell SM. Rationale for strategic graft placement in anterior cruciate ligament reconstruction: I.D.E.A.L. femoral tunnel position. Am J Orthop (Belle Mead NJ), 2015, 44(6): 253-258.
- 37. 史尉利, 马勇, 孟庆阳, 等. 后软骨缘顶点辅助定位器进行前交叉韧带I.D.E.A.L股骨骨道定位 . 中国运动医学杂志, 2021, 40(8): 595-600.
- 38. 史尉利, 马勇, 孟庆阳, 等. 后软骨缘顶点辅助定位器进行前交叉韧带I.D.E.A.L股骨骨道定位 . 中国运动医学杂志, 2021, 40(8): 595-600.
- 39. Su C, Kuang SD, Liu WJ, et al. Clinical outcome of remnant-preserving and I.D.E.A.L. femoral tunnel technique for anterior cruciate ligament reconstruction. Orthop Surg, 2020, 12(6): 1693-1702.
- 40. Su C, Kuang SD, Liu WJ, et al. Clinical outcome of remnant-preserving and I.D.E.A.L. femoral tunnel technique for anterior cruciate ligament reconstruction. Orthop Surg, 2020, 12(6): 1693-1702.
- 41. 韦继南, 常青, 李永刚, 等. 两种股骨隧道定位方法对前交叉韧带重建术后功能康复的影响. 东南大学学报 (医学版), 2022, 41(6): 806-811.
- 42. 韦继南, 常青, 李永刚, 等. 两种股骨隧道定位方法对前交叉韧带重建术后功能康复的影响. 东南大学学报 (医学版), 2022, 41(6): 806-811.
- 43. 周天平, 徐一宏, 徐卫东. 前交叉韧带重建股骨骨隧道定位的理论依据及演变. 中华关节外科杂志 (电子版), 2022, 16(1): 79-85.
- 44. 周天平, 徐一宏, 徐卫东. 前交叉韧带重建股骨骨隧道定位的理论依据及演变. 中华关节外科杂志 (电子版), 2022, 16(1): 79-85.
- 45. Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg, 2012, 25(5): 361-368.
- 46. Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg, 2012, 25(5): 361-368.
- 47. Höher J, Livesay GA, Ma CB, et al. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc, 1999, 7(4): 215-219.
- 48. Höher J, Livesay GA, Ma CB, et al. Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc, 1999, 7(4): 215-219.
- 49. Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc, 1998, 6(4): 231-240.
- 50. Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc, 1998, 6(4): 231-240.
- 51. Rodeo SA, Kawamura S, Kim HJ, et al. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med, 2006, 34(11): 1790-1800.
- 52. Rodeo SA, Kawamura S, Kim HJ, et al. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? Am J Sports Med, 2006, 34(11): 1790-1800.
- 53. Wan F, Chen T, Ge Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthop J Sports Med, 2019, 7(12): 2325967119890382. doi: 10.1177/2325967119890382.
- 54. Wan F, Chen T, Ge Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthop J Sports Med, 2019, 7(12): 2325967119890382. doi: 10.1177/2325967119890382.
- 55. Mitsou A, Vallianatos P, Piskopakis N, et al. Anterior cruciate ligament reconstruction by over-the-top repair combined with popliteus tendon plasty. J Bone Joint Surg (Br), 1990, 72(3): 398-404.
- 56. Mitsou A, Vallianatos P, Piskopakis N, et al. Anterior cruciate ligament reconstruction by over-the-top repair combined with popliteus tendon plasty. J Bone Joint Surg (Br), 1990, 72(3): 398-404.
- 57. Jonsson H, Elmqvist LG, Kärrholm J, et al. Over-the-top or tunnel reconstruction of the anterior cruciate ligament? A prospective randomised study of 54 patients. J Bone Joint Surg (Br), 1994, 76(1): 82-87.
- 58. Jonsson H, Elmqvist LG, Kärrholm J, et al. Over-the-top or tunnel reconstruction of the anterior cruciate ligament? A prospective randomised study of 54 patients. J Bone Joint Surg (Br), 1994, 76(1): 82-87.
- 59. Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med, 1994, 22(1): 48-54.
- 60. Andrews M, Noyes FR, Barber-Westin SD. Anterior cruciate ligament allograft reconstruction in the skeletally immature athlete. Am J Sports Med, 1994, 22(1): 48-54.
- 61. Lo IK, Kirkley A, Fowler PJ, et al. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Arthroscopy, 1997, 13(5): 627-634.
- 62. Lo IK, Kirkley A, Fowler PJ, et al. The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child. Arthroscopy, 1997, 13(5): 627-634.
- 63. Usman MA, Kamei G, Adachi N, et al. Revision single-bundle anterior cruciate ligament reconstruction with over-the-top route procedure. Orthop Traumatol Surg Res, 2015, 101(1): 71-75.
- 64. Usman MA, Kamei G, Adachi N, et al. Revision single-bundle anterior cruciate ligament reconstruction with over-the-top route procedure. Orthop Traumatol Surg Res, 2015, 101(1): 71-75.
- 65. Sarraj M, de Sa D, Shanmugaraj A, et al. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 427-444.
- 66. Sarraj M, de Sa D, Shanmugaraj A, et al. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 427-444.
- 67. Nagai K, Rothrauff BB, Li RT, et al. Over-the-top ACL reconstruction restores anterior and rotatory knee laxity in skeletally immature individuals and revision settings. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 538-543.
- 68. Nagai K, Rothrauff BB, Li RT, et al. Over-the-top ACL reconstruction restores anterior and rotatory knee laxity in skeletally immature individuals and revision settings. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 538-543.
- 69. Samitier G, Marcano AI, Alentorn-Geli E, et al. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg, 2015, 3(4): 220-240.
- 70. Samitier G, Marcano AI, Alentorn-Geli E, et al. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg, 2015, 3(4): 220-240.
- 71. Loh JC, Fukuda Y, Tsuda E, et al. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy, 2003, 19(3): 297-304.
- 72. Loh JC, Fukuda Y, Tsuda E, et al. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy, 2003, 19(3): 297-304.
- 73. Han Y, Hart A, Martineau PA. Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthroscopy, 2014, 30(7): 849-855.
- 74. Han Y, Hart A, Martineau PA. Is the clock face an accurate, precise, and reliable measuring tool for anterior cruciate ligament reconstruction? Arthroscopy, 2014, 30(7): 849-855.
- 75. Miller MD. Editorial commentary: Does anybody really know what time it is? Does anybody really care? Arthroscopy, 2017, 33(2): 398-399.
- 76. Miller MD. Editorial commentary: Does anybody really know what time it is? Does anybody really care? Arthroscopy, 2017, 33(2): 398-399.
- 77. Fu FH. The clock-face reference: simple but nonanatomic. Arthroscopy, 2008, 24(12): 1433, author reply 1434. doi: 10.1016/j.arthro.2008.09.003.
- 78. Fu FH. The clock-face reference: simple but nonanatomic. Arthroscopy, 2008, 24(12): 1433, author reply 1434. doi: 10.1016/j.arthro.2008.09.003.
- 79. Mehta V, Petsche T, Rawal AM. Inter- and intrarater reliability of the femoral tunnel clock-face grading system during anterior cruciate ligament reconstruction. Arthroscopy, 2017, 33(2): 394-397.
- 80. Mehta V, Petsche T, Rawal AM. Inter- and intrarater reliability of the femoral tunnel clock-face grading system during anterior cruciate ligament reconstruction. Arthroscopy, 2017, 33(2): 394-397.
- 81. Siebold R, Ellert T, Metz S, et al. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy, 2008, 24(5): 585-592.
- 82. Siebold R, Ellert T, Metz S, et al. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—a cadaver study. Arthroscopy, 2008, 24(5): 585-592.
- 83. Hutchinson MR, Ash SA. Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy, 2003, 19(9): 931-935.
- 84. Hutchinson MR, Ash SA. Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy, 2003, 19(9): 931-935.
- 85. Shino K, Suzuki T, Iwahashi T, et al. The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1164-1168.
- 86. Shino K, Suzuki T, Iwahashi T, et al. The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1164-1168.
- 87. Bhattacharyya R, Ker A, Fogg Q, et al. Lateral intercondylar ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study. Int J Surg, 2018, 50: 55-59.
- 88. Bhattacharyya R, Ker A, Fogg Q, et al. Lateral intercondylar ridge: Is it a reliable landmark for femoral ACL insertion?: An anatomical study. Int J Surg, 2018, 50: 55-59.
- 89. Hart A, Han Y, Martineau PA. The apex of the deep cartilage: A landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy, 2015, 31(9): 1777-1783.
- 90. Hart A, Han Y, Martineau PA. The apex of the deep cartilage: A landmark and new technique to help identify femoral tunnel placement in anterior cruciate ligament reconstruction. Arthroscopy, 2015, 31(9): 1777-1783.
- 91. Shi W, Zhang J, Meng Q, et al. The apex of the deep cartilage is a stable landmark to evaluate the femoral tunnel position in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2023, 31(1): 256-263.
- 92. Shi W, Zhang J, Meng Q, et al. The apex of the deep cartilage is a stable landmark to evaluate the femoral tunnel position in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2023, 31(1): 256-263.
- 93. Tsukada S, Fujishiro H, Watanabe K, et al. Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med, 2014, 42(5): 1110-1117.
- 94. Tsukada S, Fujishiro H, Watanabe K, et al. Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med, 2014, 42(5): 1110-1117.
- 95. Masuda T, Kondo E, Onodera J, et al. Effects of remnant tissue preservation on tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction using the hamstring tendon. Orthop J Sports Med, 2018, 6(12): 2325967118811293. doi: 10.1177/2325967118811293.
- 96. Masuda T, Kondo E, Onodera J, et al. Effects of remnant tissue preservation on tunnel enlargement after anatomic double-bundle anterior cruciate ligament reconstruction using the hamstring tendon. Orthop J Sports Med, 2018, 6(12): 2325967118811293. doi: 10.1177/2325967118811293.
- 97. Takahashi T, Kimura M, Hagiwara K, et al. The effect of remnant tissue preservation in anatomic double-bundle ACL reconstruction on knee stability and graft maturation. J Knee Surg, 2019, 32(6): 565-576.
- 98. Takahashi T, Kimura M, Hagiwara K, et al. The effect of remnant tissue preservation in anatomic double-bundle ACL reconstruction on knee stability and graft maturation. J Knee Surg, 2019, 32(6): 565-576.
- 99. Bernard M, Hertel P, Hornung H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg, 1997, 10(1): 14-22.
- 100. Bernard M, Hertel P, Hornung H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg, 1997, 10(1): 14-22.
- 101. Colombet P, Robinson J, Christel P, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy, 2006, 22(9): 984-992.
- 102. Colombet P, Robinson J, Christel P, et al. Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy, 2006, 22(9): 984-992.
- 103. Dessenne V, Lavallée S, Julliard R, et al. Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg, 1995, 1(1): 59-64.
- 104. Dessenne V, Lavallée S, Julliard R, et al. Computer-assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg, 1995, 1(1): 59-64.
- 105. Cheng T, Liu T, Zhang G, et al. Computer-navigated surgery in anterior cruciate ligament reconstruction: are radiographic outcomes better than conventional surgery? Arthroscopy, 2011, 27(1): 97-100.
- 106. Cheng T, Liu T, Zhang G, et al. Computer-navigated surgery in anterior cruciate ligament reconstruction: are radiographic outcomes better than conventional surgery? Arthroscopy, 2011, 27(1): 97-100.
- 107. 邱洪九. 计算机导航辅助前交叉韧带重建术的临床研究. 重庆: 陆军军医大学, 2020.
- 108. 邱洪九. 计算机导航辅助前交叉韧带重建术的临床研究. 重庆: 陆军军医大学, 2020.
- 109. 关彦齐, 王芳芳. 增材制造 (3D打印) 铸造的发展与应用. 科技创新与应用, 2020(21): 110-111.
- 110. 关彦齐, 王芳芳. 增材制造 (3D打印) 铸造的发展与应用. 科技创新与应用, 2020(21): 110-111.
- 111. Rankin I, Rehman H, Frame M. 3D-printed patient-specific ACL femoral tunnel guide from MRI. Open Orthop J, 2018, 12: 59-68.
- 112. Rankin I, Rehman H, Frame M. 3D-printed patient-specific ACL femoral tunnel guide from MRI. Open Orthop J, 2018, 12: 59-68.
- 113. 罗树林, 黄雨亭, 戴工华, 等. 3D打印技术在膝前交叉韧带重建中的应用. 体育科研, 2019, 40(1): 86-89.
- 114. 罗树林, 黄雨亭, 戴工华, 等. 3D打印技术在膝前交叉韧带重建中的应用. 体育科研, 2019, 40(1): 86-89.