1. |
Wang W, Nune KC, Tan L, et al. Bone regeneration of hollow tubular magnesium-strontium scaffolds in critical-size segmental defects: Effect of surface coatings. Mater Sci Eng C Mater Biol Appl, 2019, 100: 297-307.
|
2. |
Chen J, Zhou H, Fan Y, et al. 3D printing for bone repair: Coupling infection therapy and defect regeneration. Chemical Engineering Journal, 2023, 471: 144537.
|
3. |
Nie B, Huo S, Qu X, et al. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater, 2022, 16: 134-148.
|
4. |
He TH, Chen HX, Liu PX, et al. One-step co-doping of ZnO and Zn2+ in osteoinductive calcium phosphate ceramics with synergistic antibacterial activity for regenerative repair of infected bone defect. Journal of Materials Science & Technology, 2023, 163: 168-181.
|
5. |
Xue L, Gong N, Shepherd SJ, et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J Am Chem Soc, 2022, 144(22): 9926-9937.
|
6. |
Wang Y, Ding X, Chen Y, et al. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials, 2016, 101: 207-216.
|
7. |
Diallo T, Adjobimey M, Ruslami R, et al. Safety and side effects of rifampin versus isoniazid in children. N Engl J Med, 2018, 379(5): 454-463.
|
8. |
van Asten SAV, Mithani M, Peters EJG, et al. Complications during the treatment of diabetic foot osteomyelitis. Diabetes Res Clin Pract, 2018, 135: 58-64.
|
9. |
Jackson J, Lo J, Hsu E, et al. The combined use of gentamicin and silver nitrate in bone cement for a synergistic and extended antibiotic action against gram-positive and gram-negative bacteria. Materials (Basel), 2021, 14(12): 3413.
|
10. |
Wu S, Wu B, Liu Y, et al. Mini review therapeutic strategies targeting for biofilm and bone infections. Front Microbiol, 2022, 13: 936285.
|
11. |
Lee JH, Parthiban P, Jin GZ, et al. Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science, 2021, 117: 100732.
|
12. |
Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J Control Release, 2022, 344: 113-133.
|
13. |
Li D, Tang G, Yao H, et al. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater, 2022, 16: 47-56.
|
14. |
Talebian S, Mendes B, Conniot J, et al. Biopolymeric coatings for local release of therapeutics from biomedical implants. Adv Sci (Weinh), 2023, 10(12): e2207603.
|
15. |
Liu S, Han Z, Hao JN, et al. Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact Mater, 2023, 26: 1-13.
|
16. |
Wei X, Zhuang P, Liu K, et al. Mesoporous bioglass capsule composite injectable hydrogels with antibacterial and vascularization promotion properties for chronic wound repair. J Mater Chem B, 2022, 10(48): 10139-10149.
|
17. |
Richter RF, Ahlfeld T, Gelinsky M, et al. Composites consisting of calcium phosphate cements and mesoporous bioactive glasses as a 3D plottable drug delivery system. Acta Biomater, 2023, 156: 146-157.
|
18. |
Alfieri ML, Weil T, Ng DYW, et al. Polydopamine at biological interfaces. Adv Colloid Interface Sci, 2022, 305: 102689.
|
19. |
Hemmatpour H, De Luca O, Crestani D, et al. New insights in polydopamine formation via surface adsorption. Nat Commun, 2023, 14(1): 664.
|
20. |
You HY, Liu XJ, Li ZY, et al. Recent advances on the construction of multidimensional polydopamine-based nanostructures. European Polymer Journal, 2023, 196: 112319.
|
21. |
Khan S, Hussain A, Attar F, et al. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed Pharmacother, 2022, 146: 112531.
|
22. |
Mujtaba MA, Akhter MH, Alam MS, et al. An updated review on therapeutic potential and recent advances in drug delivery of berberine: current status and future prospect. Curr Pharm Biotechnol, 2022, 23(1): 60-71.
|
23. |
Haftcheshmeh SM, Abedi M, Mashayekhi K, et al. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res, 2022, 36(3): 1216-1230.
|
24. |
熊伟, 袁灵梅, 钱国文, 等. “补肾壮骨”中药应用于骨组织工程支架修复节段性骨缺损. 中国组织工程研究, 2023, 27(21): 3438-3444.
|
25. |
Li J, Song J, Meng D, et al. Electrospun naringin-loaded microsphere/sucrose acetate isobutyrate system promotes macrophage polarization toward M2 and facilitates osteoporotic bone defect repair. Regen Biomater, 2023, 10: rbad006.
|
26. |
李生婷, 姚毅章, 赵国廷. 柚皮苷调控lncRNA MEG3/Wnt/β-catenin信号通路促进炎症来源牙周膜干细胞的成骨分化. 中国免疫学杂志, 2023, 39(1): 59-64.
|
27. |
Zhao ZH, Ma XL, Ma JX, et al. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Mater Today Bio, 2022, 13: 100206.
|
28. |
范好美, 肖东琴, 匙峰, 等. 负载表没食子儿茶素没食子酸酯硅酸钙微球的制备及抗菌性能评价. 中国组织工程研究, 2023, 27(30): 4769-4775.
|
29. |
邬建飞, 王丙龙, 刘宇, 等. 功能化聚羟基脂肪酸酯微球的制备及其抗菌、促成骨分化功能评价. 中国修复重建外科杂志, 2023, 37(8): 929-936.
|
30. |
熊风, 姚成, 周梁爽, 等. 白藜芦醇-固体脂质纳米粒促BMSCs成骨分化实验研究. 中国修复重建外科杂志, 2022, 36(9): 1155-1165.
|