- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China;
Citation: WANG Peilin, LIN Haodong. Research progress of nanomaterials in osteomyelitis treatment. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(5): 648-655. doi: 10.7507/1002-1892.202012044 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Cortés-Penfield NW, Kulkarni PA. The history of antibiotic treatment of osteomyelitis. Open Forum Infect Dis, 2019, 6(5): ofz181. doi: 10.1093/ofid/ofz181. |
2. | Schmitt SK. Osteomyelitis. Infect Dis Clin North Am, 2017, 31(2): 325-338. |
3. | Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin Microbiol Rev, 2018, 31(2): e00084-17. doi: 10.1128/CMR.00084-17. |
4. | Li A, Xie J, Li J. Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B, 2019, 7(4): 509-527. |
5. | Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater, 2018, 30(47): e1802368. doi: 10.1002/adma.201802368. |
6. | Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors (Basel), 2019, 19(23): 5311. doi: 10.3390/s19235311. |
7. | Venugopal J, Prabhakaran MP, Low S, et al. Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des, 2008, 14(22): 2184-2200. |
8. | Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol, 2001, 19(3): 97-101. |
9. | Nauth A, Schemitsch E, Norris B, et al. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma, 2018, 32 Suppl 1: S7-S11. |
10. | Lu H, Liu Y, Guo J, et al. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci, 2016, 17(3): 334. doi: 10.3390/ijms17030334. |
11. | Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5): 8856-8874. |
12. | Tan H, Ma R, Lin C, et al. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci, 2013, 14(1): 1854-1869. |
13. | Herath TDK, Larbi A, Teoh SH, et al. Neutrophil-mediated enhancement of angiogenesis and osteogenesis in a novel triple cell co-culture model with endothelial cells and osteoblasts. J Tissue Eng Regen Med, 2018, 12(2): e1221-e1236. |
14. | Wang J, Guo J, Liu J, et al. BMP-functionalised coatings to promote osteogenesis for orthopaedic implants. Int J Mol Sci, 2014, 15(6): 10150-10168. |
15. | Shen X, Zhang Y, Gu Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials, 2016, 106: 205-216. |
16. | Wang Q, Zhang Y, Li B, et al. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B, 2017, 5(33): 6963-6972. |
17. | Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239: 119833. doi: 10.1016/j.biomaterials.2020.119833. |
18. | Min J, Choi KY, Dreaden EC, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano, 2016, 10(4): 4441-4450. |
19. | Li D, Li Y, Shrestha A, et al. Effects of programmed local delivery from a micro/nano-hierarchical surface on titanium implant on infection clearance and osteogenic induction in an infected bone defect. Adv Healthc Mater, 2019, 8(11): e1900002. doi: 10.1002/adhm.201900002. |
20. | Kubasiewicz-Ross P, Hadzik J, Seeliger J, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat, 2017, 213: 83-90. |
21. | da Silva Brum I, Frigo L, Lana Devita R, et al. Histomorphometric, immunohistochemical, ultrastructural characterization of a nano-hydroxyapatite/beta-tricalcium phosphate composite and a bone xenograft in sub-critical size bone defect in rat calvaria. Materials (Basel), 2020, 13(20): 4598. doi: 10.3390/ma13204598. |
22. | Bal Z, Korkusuz F, Ishiguro H, et al. A novel nano-hydroxyapatite/synthetic polymer/bone morphogenetic protein-2 composite for efficient bone regeneration. Spine J, 2021. doi: 10.1016/j.spinee.2021.01.019. |
23. | Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano, 2019, 13(8): 9595-9606. |
24. | Yan J, Xia D, Zhou W, et al. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater, 2020, 115: 220-234. |
25. | Schlickewei C, Klatte TO, Wildermuth Y, et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J Mater Sci Mater Med, 2019, 30(2): 15. doi: 10.1007/s10856-019-6217-y. |
26. | Song Y, Lin K, He S, et al. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine, 2018, 13: 505-523. |
27. | Thabit AK, Fatani DF, Bamakhrama MS, et al. Antibiotic penetration into bone and joints: An updated review. Int J Infect Dis, 2019, 81: 128-136. |
28. | Masters EA, Trombetta RP, de Mesy Bentley KL, et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res, 2019, 7: 20. doi: 10.1038/s41413-019-0061-z. |
29. | Bidault P, Chandad F, Grenier D. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J Can Dent Assoc, 2007, 73(8): 721-725. |
30. | Nandi SK, Mukherjee P, Roy S, et al. Local antibiotic delivery systems for the treatment of osteomyelitis—A review. Materials Science and Engineering: C, 2009, 29(8): 2478-2485. |
31. | Nandi SK, Bandyopadhyay S, Das P, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv, 2016, 34(8): 1305-1317. |
32. | Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep, 2017, 7: 41808. doi: 10.1038/srep41808. |
33. | Krishnan AG, Biswas R, Menon D, et al. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci, 2020, 8(9): 2653-2665. |
34. | Saidykhan L, Abu Bakar MZ, Rukayadi Y, et al. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomedicine, 2016, 11: 661-673. |
35. | Tao J, Zhang Y, Shen A, et al. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomedicine, 2020, 15: 5855-5871. |
36. | Al Thaher Y, Perni S, Prokopovich P. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci, 2017, 249: 234-247. |
37. | Shen SC, Ng WK, Dong YC, et al. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C Mater Biol Appl, 2016, 58: 233-241. |
38. | Shen SC, Letchmanan K, Chow PS, et al. Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. J Mech Behav Biomed Mater, 2019, 91: 91-98. |
39. | David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev, 2010, 23(3): 616-687. |
40. | Guo Y, Song G, Sun M, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol, 2020, 10: 107. doi: 10.3389/fcimb.2020.00107. |
41. | Jiang JL, Li YF, Fang TL, et al. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res, 2012, 61(3): 207-215. |
42. | Zhang P, Qin J, Zhang B, et al. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci, 2019, 6(5): 182102. |
43. | Zhao X, Han Y, Zhu T, et al. Electrospun polylactide-nano-hydroxyapatite vancomycin composite scaffolds for advanced osteomyelitis therapy. J Biomed Nanotechnol, 2019, 15(6): 1213-1222. |
44. | Meng E, Hoang T. Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv, 2012, 3(12): 1457-1467. |
45. | van Vugt TAG, Walraven JMB, Geurts JAP, et al. Antibiotic-loaded collagen sponges in clinical treatment of chronic osteomyelitis: A systematic review. J Bone Joint Surg (Am), 2018, 100(24): 2153-2161. |
46. | Stoian AB, Demetrescu I, Ionita D. Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir. Colloids Surf B Biointerfaces, 2020, 185: 110535. doi: 10.1016/j.colsurfb.2019.110535. |
47. | Hasan A, Waibhaw G, Saxena V, et al. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol, 2018, 111: 923-934. |
48. | Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond), 2006, 1(2): 169-176. |
49. | Filippi M, Born G, Felder-Flesch D, et al. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol, 2020, 35(4): 331-350. |
50. | Min KH, Lee HJ, Lee SC, et al. Biomineralized hybrid nanoparticles for imaging and therapy of cancers. Quant Imaging Med Surg, 2018, 8(7): 694-708. |
51. | Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol, 2011, 90(5): 1655-1667. |
52. | Liu L, Xu K, Wang H, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol, 2009, 4(7): 457-463. |
53. | Su YL, Hu SH. Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics, 2018, 10(4): 193. doi: 10.3390/pharmaceutics10040193. |
54. | Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(1): e1515. doi: 10.1002/wnan.1515. |
55. | Peng J, Yang Q, Shi K, et al. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev, 2019, 143: 37-67. |
56. | Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine, 2012, 7: 4545-4557. |
57. | Sanchez CJ, Ward CL, Romano DR, et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord, 2013, 14: 187. doi: 10.1186/1471-2474-14-187. |
58. | Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: Relationship and consequences in osteomyelitis. Front Cell Infect Microbiol, 2015, 5: 85. doi: 10.3389/fcimb.2015.00085. |
59. | Ko WK, Heo DN, Moon HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci, 2015, 438: 68-76. |
60. | Li J, Li JJ, Zhang J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8(15): 7992-8007. |
61. | Li J, Chen Y, Yang Y, et al. Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. J Mater Chem B, 2017, 5(7): 1353-1362. |
62. | Zhang R, Lee P, Lui VC, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine, 2015, 11(8): 1949-1959. |
63. | Xu D, Wan Y, Li Z, et al. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater Sci, 2020, 8(12): 3286-3300. |
64. | Elkhenany H, Bourdo S, Hecht S, et al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine, 2017, 13(7): 2117-2126. |
65. | Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces, 2017, 9(6): 5128-5138. |
66. | Krauss JL, Roper PM, Ballard A, et al. Staphylococcus aureus infects osteoclasts and replicates intracellularly. mBio, 2019, 10(5): e02447-2419. |
67. | Sul OJ, Kim JC, Kyung TW, et al. Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem, 2010, 74(11): 2209-2213. |
68. | Zeng L, Geng H, Gu W, et al. Au Nanoparticles attenuate rankl-induced osteoclastogenesis by suppressing pre-osteoclast fusion. J Nanosci Nanotechnol, 2019, 19(4): 2166-2173. |
69. | Bai X, Gao Y, Zhang M, et al. Carboxylated gold nanoparticles inhibit bone erosion by disturbing the acidification of an osteoclast absorption microenvironment. Nanoscale, 2020, 12(6): 3871-3878. |
70. | Geng H, Chang YN, Bai X, et al. Fullerenol nanoparticles suppress RANKL-induced osteoclastogenesis by inhibiting differentiation and maturation. Nanoscale, 2017, 9(34): 12516-12523. |
71. | Ha SW, Viggeswarapu M, Habib MM, et al. Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater, 2018, 82: 184-196. |
72. | Chen F, Wang M, Wang J, et al. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B, 2019, 7(47): 7574-7587. |
73. | Cicuéndez M, Doadrio JC, Hernández A, et al. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater, 2018, 65: 450-461. |
74. | Penders J, Stolzoff M, Hickey DJ, et al. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine, 2017, 12: 2457-2468. |
75. | Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters. ACS Nano, 2017, 11(7): 6904-6910. |
76. | Rai A, Prabhune A, Perry C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem, 2010, 20: 6789-6798. |
77. | Badwaik VD, Vangala LM, Pender DS, et al. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett, 2012, 7(1): 623. |
78. | Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, et al. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics, 2019, 11(7): 1265-1276. |
79. | Lee B, Lee DG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J Appl Microbiol, 2019, 127(3): 701-712. |
80. | Aurore V, Caldana F, Blanchard M, et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine, 2018, 14(2): 601-607. |
81. | Nandi SK, Shivaram A, Bose S, et al. Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater, 2018, 106(3): 1073-1083. |
82. | Huang T, Holden JA, Heath DE, et al. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 2019, 11(31): 14937-14951. |
83. | Qadri S, Haik Y, Mensah-Brown E, et al. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine, 2017, 13(7): 2241-2250. |
84. | Seo JJ, Mandakhbayar N, Kang MS, et al. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials, 2021, 268: 120593. doi: 10.1016/j.biomaterials.2020.120593. |
85. | Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine, 2020, 15: 7553-7568. |
86. | Kakar J. Multimodality treatment for nonhealing wound with osteomyelitis in sickle cell disease. Int J Low Extrem Wounds, 2020. doi: 10.1177/1534734620971068. |
87. | Baskar K, Anusuya T, Devanand Venkatasubbu G. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater Sci Eng C Mater Biol Appl, 2017, 73: 8-14. |
88. | Fatima S, Alfrayh R, Alrashed M, et al. Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Nanomedicine, 2021, 16: 331-343. |
89. | Yazhiniprabha M, Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109763. doi: 10.1016/j.msec.2019.109763. |
90. | Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials, 2019, 206: 115-132. |
- 1. Cortés-Penfield NW, Kulkarni PA. The history of antibiotic treatment of osteomyelitis. Open Forum Infect Dis, 2019, 6(5): ofz181. doi: 10.1093/ofid/ofz181.
- 2. Schmitt SK. Osteomyelitis. Infect Dis Clin North Am, 2017, 31(2): 325-338.
- 3. Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin Microbiol Rev, 2018, 31(2): e00084-17. doi: 10.1128/CMR.00084-17.
- 4. Li A, Xie J, Li J. Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B, 2019, 7(4): 509-527.
- 5. Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater, 2018, 30(47): e1802368. doi: 10.1002/adma.201802368.
- 6. Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors (Basel), 2019, 19(23): 5311. doi: 10.3390/s19235311.
- 7. Venugopal J, Prabhakaran MP, Low S, et al. Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des, 2008, 14(22): 2184-2200.
- 8. Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol, 2001, 19(3): 97-101.
- 9. Nauth A, Schemitsch E, Norris B, et al. Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma, 2018, 32 Suppl 1: S7-S11.
- 10. Lu H, Liu Y, Guo J, et al. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci, 2016, 17(3): 334. doi: 10.3390/ijms17030334.
- 11. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5): 8856-8874.
- 12. Tan H, Ma R, Lin C, et al. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci, 2013, 14(1): 1854-1869.
- 13. Herath TDK, Larbi A, Teoh SH, et al. Neutrophil-mediated enhancement of angiogenesis and osteogenesis in a novel triple cell co-culture model with endothelial cells and osteoblasts. J Tissue Eng Regen Med, 2018, 12(2): e1221-e1236.
- 14. Wang J, Guo J, Liu J, et al. BMP-functionalised coatings to promote osteogenesis for orthopaedic implants. Int J Mol Sci, 2014, 15(6): 10150-10168.
- 15. Shen X, Zhang Y, Gu Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials, 2016, 106: 205-216.
- 16. Wang Q, Zhang Y, Li B, et al. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B, 2017, 5(33): 6963-6972.
- 17. Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239: 119833. doi: 10.1016/j.biomaterials.2020.119833.
- 18. Min J, Choi KY, Dreaden EC, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano, 2016, 10(4): 4441-4450.
- 19. Li D, Li Y, Shrestha A, et al. Effects of programmed local delivery from a micro/nano-hierarchical surface on titanium implant on infection clearance and osteogenic induction in an infected bone defect. Adv Healthc Mater, 2019, 8(11): e1900002. doi: 10.1002/adhm.201900002.
- 20. Kubasiewicz-Ross P, Hadzik J, Seeliger J, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat, 2017, 213: 83-90.
- 21. da Silva Brum I, Frigo L, Lana Devita R, et al. Histomorphometric, immunohistochemical, ultrastructural characterization of a nano-hydroxyapatite/beta-tricalcium phosphate composite and a bone xenograft in sub-critical size bone defect in rat calvaria. Materials (Basel), 2020, 13(20): 4598. doi: 10.3390/ma13204598.
- 22. Bal Z, Korkusuz F, Ishiguro H, et al. A novel nano-hydroxyapatite/synthetic polymer/bone morphogenetic protein-2 composite for efficient bone regeneration. Spine J, 2021. doi: 10.1016/j.spinee.2021.01.019.
- 23. Zhou K, Yu P, Shi X, et al. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano, 2019, 13(8): 9595-9606.
- 24. Yan J, Xia D, Zhou W, et al. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater, 2020, 115: 220-234.
- 25. Schlickewei C, Klatte TO, Wildermuth Y, et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J Mater Sci Mater Med, 2019, 30(2): 15. doi: 10.1007/s10856-019-6217-y.
- 26. Song Y, Lin K, He S, et al. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine, 2018, 13: 505-523.
- 27. Thabit AK, Fatani DF, Bamakhrama MS, et al. Antibiotic penetration into bone and joints: An updated review. Int J Infect Dis, 2019, 81: 128-136.
- 28. Masters EA, Trombetta RP, de Mesy Bentley KL, et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res, 2019, 7: 20. doi: 10.1038/s41413-019-0061-z.
- 29. Bidault P, Chandad F, Grenier D. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J Can Dent Assoc, 2007, 73(8): 721-725.
- 30. Nandi SK, Mukherjee P, Roy S, et al. Local antibiotic delivery systems for the treatment of osteomyelitis—A review. Materials Science and Engineering: C, 2009, 29(8): 2478-2485.
- 31. Nandi SK, Bandyopadhyay S, Das P, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv, 2016, 34(8): 1305-1317.
- 32. Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep, 2017, 7: 41808. doi: 10.1038/srep41808.
- 33. Krishnan AG, Biswas R, Menon D, et al. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci, 2020, 8(9): 2653-2665.
- 34. Saidykhan L, Abu Bakar MZ, Rukayadi Y, et al. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomedicine, 2016, 11: 661-673.
- 35. Tao J, Zhang Y, Shen A, et al. Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomedicine, 2020, 15: 5855-5871.
- 36. Al Thaher Y, Perni S, Prokopovich P. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci, 2017, 249: 234-247.
- 37. Shen SC, Ng WK, Dong YC, et al. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C Mater Biol Appl, 2016, 58: 233-241.
- 38. Shen SC, Letchmanan K, Chow PS, et al. Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. J Mech Behav Biomed Mater, 2019, 91: 91-98.
- 39. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev, 2010, 23(3): 616-687.
- 40. Guo Y, Song G, Sun M, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol, 2020, 10: 107. doi: 10.3389/fcimb.2020.00107.
- 41. Jiang JL, Li YF, Fang TL, et al. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res, 2012, 61(3): 207-215.
- 42. Zhang P, Qin J, Zhang B, et al. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci, 2019, 6(5): 182102.
- 43. Zhao X, Han Y, Zhu T, et al. Electrospun polylactide-nano-hydroxyapatite vancomycin composite scaffolds for advanced osteomyelitis therapy. J Biomed Nanotechnol, 2019, 15(6): 1213-1222.
- 44. Meng E, Hoang T. Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv, 2012, 3(12): 1457-1467.
- 45. van Vugt TAG, Walraven JMB, Geurts JAP, et al. Antibiotic-loaded collagen sponges in clinical treatment of chronic osteomyelitis: A systematic review. J Bone Joint Surg (Am), 2018, 100(24): 2153-2161.
- 46. Stoian AB, Demetrescu I, Ionita D. Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir. Colloids Surf B Biointerfaces, 2020, 185: 110535. doi: 10.1016/j.colsurfb.2019.110535.
- 47. Hasan A, Waibhaw G, Saxena V, et al. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol, 2018, 111: 923-934.
- 48. Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond), 2006, 1(2): 169-176.
- 49. Filippi M, Born G, Felder-Flesch D, et al. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol, 2020, 35(4): 331-350.
- 50. Min KH, Lee HJ, Lee SC, et al. Biomineralized hybrid nanoparticles for imaging and therapy of cancers. Quant Imaging Med Surg, 2018, 8(7): 694-708.
- 51. Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol, 2011, 90(5): 1655-1667.
- 52. Liu L, Xu K, Wang H, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol, 2009, 4(7): 457-463.
- 53. Su YL, Hu SH. Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics, 2018, 10(4): 193. doi: 10.3390/pharmaceutics10040193.
- 54. Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(1): e1515. doi: 10.1002/wnan.1515.
- 55. Peng J, Yang Q, Shi K, et al. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev, 2019, 143: 37-67.
- 56. Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine, 2012, 7: 4545-4557.
- 57. Sanchez CJ, Ward CL, Romano DR, et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord, 2013, 14: 187. doi: 10.1186/1471-2474-14-187.
- 58. Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: Relationship and consequences in osteomyelitis. Front Cell Infect Microbiol, 2015, 5: 85. doi: 10.3389/fcimb.2015.00085.
- 59. Ko WK, Heo DN, Moon HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci, 2015, 438: 68-76.
- 60. Li J, Li JJ, Zhang J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8(15): 7992-8007.
- 61. Li J, Chen Y, Yang Y, et al. Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. J Mater Chem B, 2017, 5(7): 1353-1362.
- 62. Zhang R, Lee P, Lui VC, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine, 2015, 11(8): 1949-1959.
- 63. Xu D, Wan Y, Li Z, et al. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater Sci, 2020, 8(12): 3286-3300.
- 64. Elkhenany H, Bourdo S, Hecht S, et al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine, 2017, 13(7): 2117-2126.
- 65. Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces, 2017, 9(6): 5128-5138.
- 66. Krauss JL, Roper PM, Ballard A, et al. Staphylococcus aureus infects osteoclasts and replicates intracellularly. mBio, 2019, 10(5): e02447-2419.
- 67. Sul OJ, Kim JC, Kyung TW, et al. Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem, 2010, 74(11): 2209-2213.
- 68. Zeng L, Geng H, Gu W, et al. Au Nanoparticles attenuate rankl-induced osteoclastogenesis by suppressing pre-osteoclast fusion. J Nanosci Nanotechnol, 2019, 19(4): 2166-2173.
- 69. Bai X, Gao Y, Zhang M, et al. Carboxylated gold nanoparticles inhibit bone erosion by disturbing the acidification of an osteoclast absorption microenvironment. Nanoscale, 2020, 12(6): 3871-3878.
- 70. Geng H, Chang YN, Bai X, et al. Fullerenol nanoparticles suppress RANKL-induced osteoclastogenesis by inhibiting differentiation and maturation. Nanoscale, 2017, 9(34): 12516-12523.
- 71. Ha SW, Viggeswarapu M, Habib MM, et al. Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater, 2018, 82: 184-196.
- 72. Chen F, Wang M, Wang J, et al. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B, 2019, 7(47): 7574-7587.
- 73. Cicuéndez M, Doadrio JC, Hernández A, et al. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater, 2018, 65: 450-461.
- 74. Penders J, Stolzoff M, Hickey DJ, et al. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine, 2017, 12: 2457-2468.
- 75. Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters. ACS Nano, 2017, 11(7): 6904-6910.
- 76. Rai A, Prabhune A, Perry C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem, 2010, 20: 6789-6798.
- 77. Badwaik VD, Vangala LM, Pender DS, et al. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett, 2012, 7(1): 623.
- 78. Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, et al. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics, 2019, 11(7): 1265-1276.
- 79. Lee B, Lee DG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J Appl Microbiol, 2019, 127(3): 701-712.
- 80. Aurore V, Caldana F, Blanchard M, et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine, 2018, 14(2): 601-607.
- 81. Nandi SK, Shivaram A, Bose S, et al. Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater, 2018, 106(3): 1073-1083.
- 82. Huang T, Holden JA, Heath DE, et al. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 2019, 11(31): 14937-14951.
- 83. Qadri S, Haik Y, Mensah-Brown E, et al. Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine, 2017, 13(7): 2241-2250.
- 84. Seo JJ, Mandakhbayar N, Kang MS, et al. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials, 2021, 268: 120593. doi: 10.1016/j.biomaterials.2020.120593.
- 85. Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine, 2020, 15: 7553-7568.
- 86. Kakar J. Multimodality treatment for nonhealing wound with osteomyelitis in sickle cell disease. Int J Low Extrem Wounds, 2020. doi: 10.1177/1534734620971068.
- 87. Baskar K, Anusuya T, Devanand Venkatasubbu G. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater Sci Eng C Mater Biol Appl, 2017, 73: 8-14.
- 88. Fatima S, Alfrayh R, Alrashed M, et al. Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Nanomedicine, 2021, 16: 331-343.
- 89. Yazhiniprabha M, Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109763. doi: 10.1016/j.msec.2019.109763.
- 90. Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials, 2019, 206: 115-132.
-
Previous Article
Research progress of intramedullary lengthening nail technology -
Next Article
携带趾固有动脉斧头状皮瓣修复第五趾近节胫侧创面