- 1. Department of Orthopedics, North China University of Science and Technology Affiliated Hospital, Tangshan Hebei, 063000, P.R.China;
- 2. School of Clinical Medicine, North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China;
- 3. Hebei Trauma Research Institute, Tangshan Hebei, 063000, P.R.China;
Citation: ZHANG Yi, ZHANG Xiangao, HU Zhongling, REN Xingyu, WANG Qian, WANG Zhiqiang. Research progress on antibacterial properties of porous medical implant materials. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(11): 1478-1485. doi: 10.7507/1002-1892.202001030 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Aarvold A, Smith JO, Tayton ER, et al. The effect of porosity of a biphasic ceramic scaffold on human skeletal stem cell growth and differentiation in vivo. J Biomed Mater Res A, 2013, 101(12): 3431-3437. |
2. | Bružauskaitė I, Bironaitė D, Bagdonas E, et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology, 2016, 68(3): 355-369. |
3. | 容锡沧, 张余, 谭帼馨, 等. 反应时间对聚多巴胺/纳米银修饰多孔钛生物学性能的影响. 组织工程与重建外科杂志, 2015, 11(5): 295-300, 326. |
4. | Rodríguez-Contreras A, Guillem-Marti J, Lopez O, et al. Antimicrobial PHAs coatings for solid and porous tantalum implants. Colloids Surf B Biointerfaces, 2019, 182: 110317. |
5. | Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J, 2018, 100-B(1 Supple A): 9-16. |
6. | Vollmer NL, Spear JR, Ayers RA. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis. J Mater Sci Mater Med, 2016, 27(6): 104. |
7. | 弓家弘, 王静成, 王大新, 等. 包封硫酸依替米星壳聚糖/羟基磷灰石纳米缓释骨支架的实验研究. 中华骨科杂志, 2011, 31(12): 1374-1381. |
8. | Kundu B, Nandi SK, Dasgupta S, et al. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial. J Mater Sci Mater Med, 2011, 22(3): 705-720. |
9. | van Oosten M, Schäfer T, Gazendam JA, et al. Real-time in vivo imaging of invasive-and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun, 2013, 4: 2584. |
10. | 王海君, 张可勇, 刘亚琴. Application of porous inorganic materials in biomedicine and medicine. 中国组织工程研究与临床康复, 2008, 12(41): 8189-8192. |
11. | 赵立臣, 谢宇, 张喆, 等. ZnO 纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能. 材料导报, 2019, 33(4): 577-581. |
12. | Han C, Yao Y, Cheng X, et al. Electrophoretic deposition of gentamicin-loaded silk fibroin coatings on 3D-printed porous cobalt-chromium-molybdenum bone substitutes to prevent orthopedic implant infections. Biomacromolecules, 2017, 18(11): 3776-3787. |
13. | Kazek-Kęsik A, Nosol A, Płonka J, et al. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mater Sci Eng C Mater Biol Appl, 2019, 94: 998-1008. |
14. | 麦萍, 崔旭梅, 赵朝勇, 等. 空间占位法制备多孔 Ti-5Cu 合金及性能的研究. 热加工工艺, 2019, 48(10): 65-69. |
15. | Ni S, Li X, Yang P, et al. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. Mater Sci Eng C Mater Biol Appl, 2016, 58: 700-708. |
16. | Flores C, Degoutin S, Chai F, et al. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections. Mater Sci Eng C Mater Biol Appl, 2016, 64: 108-116. |
17. | Ye J, He J, Wang C, et al. Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol Lett, 2014, 36(5): 961-968. |
18. | Díaz-Rodríguez P, Landin M, Rey-Rico A, et al. Bio-inspired porous SiC ceramics loaded with vancomycin for preventing MRSA infections. J Mater Sci Mater Med, 2011, 22(2): 339-347. |
19. | Wang J, Wang C, Jin K, et al. Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110036. |
20. | Yuan X, Ouyang L, Luo Y, et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater, 2019, 86: 323-337. |
21. | Li B, Brown KV, Wenke JC, et al. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release, 2010, 145(3): 221-230. |
22. | Manoj Kumar R, Gupta P, Sharma SK, et al. Sustained drug release from surface modified UHMWPE for acetabular cup lining in total hip implant. Mater Sci Eng C Mater Biol Appl, 2017, 77: 649-661. |
23. | Shi M, Kretlow JD, Nguyen A, et al. Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials, 2010, 31(14): 4146-4156. |
24. | 肖月, 康梁, 吕庆, 等. 纳米载银抗菌剂与四针状氧化锌抗白色念珠菌的性能. 中国组织工程研究, 2013, 17(25): 4609-4615. |
25. | 吴建新, 李坤, 徐宁, 等. 多药缓释抗菌抗炎支架的制备与性能分析. 中国组织工程研究, 2019, 23(18): 2858-2864. |
26. | Zhao Q, Yi L, Jiang L, et al. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating. Nanomedicine (Lond), 2019, 14(9): 1109-1133. |
27. | Gokcekaya O, Webster TJ, Ueda K, et al. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. Mater Sci Eng C Mater Biol Appl, 2017, 77: 556-564. |
28. | Cochis A, Azzimonti B, Della Valle C, et al. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. J Biomed Mater Res A, 2015, 103(3): 1176-1187. |
29. | Braem A, De Cremer K, Delattin N, et al. Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces, 2015, 126: 481-488. |
30. | 李根, 李丽梅, 蒋佳兴, 等. 均相自发泡法制备抗菌多孔复合骨修复支架. 功能材料, 2016, 47(6): 6176-6180. |
31. | Lu Y, Li L, Zhu Y, et al. Multifunctional Copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Appl Mater Interfaces, 2018, 10(1): 127-138. |
32. | Ambrose CG, Clyburn TA, Mika J, et al. Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. J Bone Joint Surg (Am), 2014, 96(2): 128-134. |
33. | Hamid Reza BAKHSHESHI-RAD, Ehsan DAYAGHI, Ahmad Fauzi ISMAIL, et al. Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering. Trans Nonferrous Met Soc China, 2019, 29(5): 984-996. |
34. | 赵朝勇, 张雪峰, 张磊, 等. 银含量对多孔钛微观结构和力学性能的影响. 钢铁钒钛, 2018, 39(3): 40-45. |
35. | Dong J, Zhang S, Liu H, et al. Novel alternative therapy for spinal tuberculosis during surgery: reconstructing with anti-tuberculosis bioactivity implants. Expert Opin Drug Deliv, 2014, 11(3): 299-305. |
36. | 范剑波, 常山, 董咪娜, 等. 表面矿化的载银纳米羟基磷灰石/聚酰胺 66 抗菌多孔支架研究. 生物医学工程学杂志, 2012, 29(6): 1119-1124. |
37. | Zhou W, Peng X, Ma Y, et al. Two-staged Time-dependent materials for the prevention of implant-related infections. Acta Biomater, 2020, 101: 128-140. |
38. | Iviglia G, Cassinelli C, Bollati D, et al. Engineered porous scaffolds for periprosthetic infection prevention. Mater Sci Eng C Mater Biol Appl, 2016, 68: 701-715. |
39. | Sethmann I, Völkel S, Pfeifer F, et al. Development of phosphatized calcium carbonate biominerals as bioactive bone graft substitute materials, Part Ⅱ: functionalization with antibacterial silver ions. J Funct Biomater, 2018, 9(4): E67. |
40. | Yuan J, Wang B, Han C, et al. In vitro comparison of three rifampicin loading methods in a reinforced porous β-tricalcium phosphate scaffold. J Mater Sci Mater Med, 2015, 26(4): 174. |
41. | Aw MS, Simovic S, Addai-Mensah J, et al. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine (Lond), 2011, 6(7): 1159-1173. |
42. | Doll K, Fadeeva E, Schaeske J, et al. Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties. ACS Appl Mater Interfaces, 2017, 9(11): 9359-9368. |
43. | Gasik M, Van Mellaert L, Pierron D, et al. Reduction of biofilm infection risks and promotion of osteointegration for optimized surfaces of titanium implants. Adv Healthc Mater, 2012, 1(1): 117-127. |
44. | Wang GH, Fu H, Zhao YZ, et al. One integration properties of antibacterial biomimetic porous titanium implants. Trans Nonferrous Met Soc China, 2017, 27(9): 2007-2014. |
45. | Zhang X, Jia W, Gu Y, et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials, 2010, 31(22): 5865-5874. |
46. | David N, Nallaiyan R. Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on Titanium against chronic osteomyelitis infection. Int J Biol Macromol, 2018, 110: 206-214. |
47. | Deng L, He X, Xie K, et al. Dual therapy coating on micro/nanoscale porous polyetheretherketone to eradicate biofilms and accelerate bone tissue repair. Macromol Biosci, 2019, 19(2): e1800376. |
48. | Dong J, Zhang S, Ma J, et al. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PLoS One, 2014, 9(4): e94937. |
49. | Zhu M, Li K, Zhu Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater, 2015, 16: 145-155. |
50. | Aguilar-Colomer A, Doadrio JC, Pérez-Jorge C, et al. Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. J Antibiot (Tokyo), 2017, 70(3): 259-263. |
51. | Badar M, Rahim MI, Kieke M, et al. Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J Biomed Mater Res A, 2015, 103(6): 2141-2149. |
52. | Yang CC, Lin CC, Liao JW, et al. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C Mater Biol Appl, 2013, 33(4): 2203-2212. |
53. | Parent M, Magnaudeix A, Delebassée S, et al. Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation. J Biomater Appl, 2016, 31(4): 488-498. |
54. | Gimeno M, Pinczowski P, Vázquez FJ, et al. Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int J Pharm, 2013, 452(1-2): 166-172. |
55. | Zhang T, Zhou WH, Jia ZJ, et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al3V for improved hemocompatibility, osteogenic and anti-infection potencies. Science China Materials, 2018, 61(4): 579-592. |
56. | 刘楠, 赵黎, 胡玲珑, 等. 孔径及壳聚糖对多孔 β-TCP 中庆大霉素释放的影响. 现代生物医学进展, 2012, 12(32): 6207-6213. |
57. | 梁伟, 徐建, 葛淑华, 等. 载药脂质体复合缺钙磷灰石骨水泥支架的研究. 无机化学学报, 2012, 28(7): 1397-1402. |
58. | Bakhshandeh S, Gorgin Karaji Z, Lietaert K, et al. Simultaneous delivery of multiple antibacterial agents from additively manufactured porous biomaterials to fully eradicate planktonic and adherent Staphylococcus aureus. ACS Appl Mater Interfaces, 2017, 9(31): 25691-25699. |
59. | Xu Z, Chen X, Tan R, et al. Preparation and characterization of a gallium-loaded antimicrobial artificial dermal scaffold. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110063. |
60. | Pandey A, Midha S, Sharma RK, et al. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater Sci Eng C Mater Biol Appl, 2018, 88: 13-24. |
61. | Durgalakshmi D, Balakumar S, Raja CA, et al. Structural, morphological and antibacterial investigation of Ag-impregnated sol-gel-derived 45S5 nanobioglass systems. J Nanosci Nanotechnol, 2015, 15(6): 4285-4295. |
62. | Wu X, Li J, Wang L, et al. The release properties of silver ions from Ag-nHA/TiO2/PA66 antimicrobial composite scaffolds. Biomed Mater, 2010, 5(4): 044105. |
63. | Shih SJ, Tzeng WL, Jatnika R, et al. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B Appl Biomater, 2015, 103(4): 899-907. |
64. | Deng Y, Yang L, Huang X, et al. Dual Ag/ZnO-decorated micro-/nanoporous sulfonated polyetheretherketone with superior antibacterial capability and biocompatibility via layer-by-layer self-assembly strategy. Macromol Biosci, 2018, 18(7): e1800028. |
65. | Liu W, Li J, Cheng M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 2019, 208: 8-20. |
66. | Mahmoudi M, Zhao M, Matsuura Y, et al. Infection-resistant MRI-visible scaffolds for tissue engineering applications. Bioimpacts, 2016, 6(2): 111-115. |
67. | Chimutengwende-Gordon M, Pendegrass C, Blunn G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses. Bone Joint J, 2017, 99-B(3): 393-400. |
68. | Amin Yavari S, Loozen L, Paganelli FL, et al. Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl Mater Interfaces, 2016, 8(27): 17080-17089. |
69. | Croes M, Bakhshandeh S, van Hengel IAJ, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater, 2018, 81: 315-327. |
70. | van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017, 140: 1-15. |
71. | D’Britto V, Kapse H, Babrekar H, et al. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive. Nanoscale, 2011, 3(7): 2957-2963. |
72. | Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater, 2012, 8(2): 904-915. |
73. | He X, Zhang X, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings. Biomed Mater, 2016, 11(4): 045008. |
74. | Necula BS, van Leeuwen JP, Fratila-Apachitei LE, et al. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater, 2012, 8(11): 4191-4197. |
75. | Scavone M, Armentano I, Fortunati E, et al. Antimicrobial properties and cytocompatibility of PLGA/Ag nanocomposites. Materials (Basel), 2016, 9(1): E37. |
76. | Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Sci Eng C Mater Biol Appl, 2014, 45: 402-410. |
77. | 周艳艳, 张淑华, 李岳, 等. 载银多孔抗菌玻璃的研制. 光学技术, 2010, 36(3): 424-427. |
78. | 王会珍, 贺晓静, 王若云, 等. 锌锶共掺杂 TiO2 多孔涂层的抗菌及生物相容性. 中国表面工程, 2017, 30(2): 20-26. |
79. | 张宇承, 张文云, 宝福凯, 等. 多孔 HAPw/n-ZnO 骨修复材料的抗菌机理及抗生物膜研究. 口腔医学研究, 2016, 32(10): 1010-1014. |
80. | 耿振华, 李静松, 张翔宇. Ag 掺杂多孔 TiO2 涂层耐腐蚀性与抗菌性研究. 热加工工艺, 2016, 45(18): 139-141. |
81. | 崔冉, 魏媛媛, 陈晶晶, 等. Cu/PAA 的制备及其抗菌性能研究. 工业微生物, 2019, 49(3): 13-18. |
82. | 杨维佳, 郝亚敏, 闫翎鹏, 等. 多孔碳微球负载纳米银的制备及抗菌性能. 太原理工大学学报, 2014, 45(3): 285-290. |
83. | 侑宜森田, 和夫藤井, 尾池和樹, 等. Zn 置換 Hydrotalcite の歯周病関連菌産生 H2Sの吸着効果と抗菌作用. 日本歯科理工学会誌, 2019, 38(2): 109-118. |
84. | 余森, 于振涛, 韩建业, 等. 纯钛表面两步电化学法制备载银多孔涂层. 中国表面工程, 2013, 26(5): 83-89. |
85. | 李慕勤, Asmaa Alzalab, 新朋礼, 等. 纯钛超声微弧氧化-化学镀铜涂层的制备及抗菌性. 材料保护, 2016, 49(12): 13-16, 21. |
86. | 缪玲玲, 杜文姬, 胡耀娟, 等. 微波水热法合成纳米氧化铜及抗菌性能. 化工时刊, 2013, 27(8): 10-13. |
87. | 余森, 于振涛, 韩建业, 等. Ti-6Al-4V 医用钛合金表面载银涂层的制备和抗菌性能研究. 生物医学工程与临床, 2013, 17(6): 517-522. |
88. | 王静, 孙凤莲, 孟祥才, 等. 钛金属表面微弧氧化处理制备抗菌性生物活性涂层. 金属热处理, 2012, 37(8): 50-54. |
89. | 周冠军, 杨大鹏, 刘新芳, 等. 纳米银羟基磷灰石涂层正畸陶瓷托槽的抗菌与力学性能. 中国组织工程研究, 2015, 19(52): 8423-8427. |
90. | 李艳琼, 余巍, 张俊敏, 等. Ag/TiO2 纳米复合材料的结构及抗菌性能研究. 贵金属, 2011, 32(4): 24-28. |
91. | 张静莹, 孙慎霞, 齐民, 等. 含锌羟基磷灰石二氧化钛复合涂层的抗菌性能. 中国组织工程研究, 2012, 16(38): 7092-7095. |
92. | 廖航, 姚玉龙, 缪新新, 等. 纳米氧化锌在骨科中的应用前景. 中国矫形外科杂志, 2017, 25(18): 1675-1678. |
93. | Zhang J, Wei W, Yang L, et al. Stimulation of cell responses and bone ingrowth into macro-microporous implants of nano-bioglass/polyetheretherketone composite and enhanced antibacterial activity by release of hinokitiol. Colloids Surf B Biointerfaces, 2018, 164: 347-357. |
94. | Mueller B, Treccani L, Rezwan K. Antibacterial active open-porous hydroxyapatite/lysozyme scaffolds suitable as bone graft and depot for localised drug delivery. J Biomater Appl, 2017, 31(8): 1123-1134. |
95. | Prabhawathi V, Boobalan T, Sivakumar PM, et al. Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique. PLoS One, 2014, 9(5): e96152. |
96. | Yang C, Ouyang L, Wang W, et al. Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. J Mater Chem B, 2019, 7(36): 5541-5553. |
97. | 雷文茜, 任科峰, 陈夏超, 等. 动态多孔海绵结构多层膜负载溶菌酶用于抗菌涂层的研究. 高分子学报, 2017, 5(5): 744-751. |
98. | 朱婷, 陈海燕, 徐维超, 等. PS-b-PAA/PLA 有序多孔抗菌膜. 膜科学与技术, 2015, 35(4): 1-6. |
99. | Wu Y, Zitelli JP, TenHuisen KS, et al. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials, 2011, 32(4): 951-960. |
100. | Whitehead KA, Verran J. The effect of surface topography on the retention of microorganisms. Food and Bioproducts Processing, 2006, 84(4): 253-259. |
101. | Vimbela G, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine, 2017, 12: 3941-3965. |
- 1. Aarvold A, Smith JO, Tayton ER, et al. The effect of porosity of a biphasic ceramic scaffold on human skeletal stem cell growth and differentiation in vivo. J Biomed Mater Res A, 2013, 101(12): 3431-3437.
- 2. Bružauskaitė I, Bironaitė D, Bagdonas E, et al. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology, 2016, 68(3): 355-369.
- 3. 容锡沧, 张余, 谭帼馨, 等. 反应时间对聚多巴胺/纳米银修饰多孔钛生物学性能的影响. 组织工程与重建外科杂志, 2015, 11(5): 295-300, 326.
- 4. Rodríguez-Contreras A, Guillem-Marti J, Lopez O, et al. Antimicrobial PHAs coatings for solid and porous tantalum implants. Colloids Surf B Biointerfaces, 2019, 182: 110317.
- 5. Su EP, Justin DF, Pratt CR, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J, 2018, 100-B(1 Supple A): 9-16.
- 6. Vollmer NL, Spear JR, Ayers RA. Antimicrobial activity and biologic potential of silver-substituted calcium phosphate constructs produced with self-propagating high-temperature synthesis. J Mater Sci Mater Med, 2016, 27(6): 104.
- 7. 弓家弘, 王静成, 王大新, 等. 包封硫酸依替米星壳聚糖/羟基磷灰石纳米缓释骨支架的实验研究. 中华骨科杂志, 2011, 31(12): 1374-1381.
- 8. Kundu B, Nandi SK, Dasgupta S, et al. Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial. J Mater Sci Mater Med, 2011, 22(3): 705-720.
- 9. van Oosten M, Schäfer T, Gazendam JA, et al. Real-time in vivo imaging of invasive-and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun, 2013, 4: 2584.
- 10. 王海君, 张可勇, 刘亚琴. Application of porous inorganic materials in biomedicine and medicine. 中国组织工程研究与临床康复, 2008, 12(41): 8189-8192.
- 11. 赵立臣, 谢宇, 张喆, 等. ZnO 纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能. 材料导报, 2019, 33(4): 577-581.
- 12. Han C, Yao Y, Cheng X, et al. Electrophoretic deposition of gentamicin-loaded silk fibroin coatings on 3D-printed porous cobalt-chromium-molybdenum bone substitutes to prevent orthopedic implant infections. Biomacromolecules, 2017, 18(11): 3776-3787.
- 13. Kazek-Kęsik A, Nosol A, Płonka J, et al. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. Mater Sci Eng C Mater Biol Appl, 2019, 94: 998-1008.
- 14. 麦萍, 崔旭梅, 赵朝勇, 等. 空间占位法制备多孔 Ti-5Cu 合金及性能的研究. 热加工工艺, 2019, 48(10): 65-69.
- 15. Ni S, Li X, Yang P, et al. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. Mater Sci Eng C Mater Biol Appl, 2016, 58: 700-708.
- 16. Flores C, Degoutin S, Chai F, et al. Gentamicin-loaded poly(lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections. Mater Sci Eng C Mater Biol Appl, 2016, 64: 108-116.
- 17. Ye J, He J, Wang C, et al. Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol Lett, 2014, 36(5): 961-968.
- 18. Díaz-Rodríguez P, Landin M, Rey-Rico A, et al. Bio-inspired porous SiC ceramics loaded with vancomycin for preventing MRSA infections. J Mater Sci Mater Med, 2011, 22(2): 339-347.
- 19. Wang J, Wang C, Jin K, et al. Simultaneous enhancement of vascularization and contact-active antibacterial activity in diopside-based ceramic orbital implants. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110036.
- 20. Yuan X, Ouyang L, Luo Y, et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomater, 2019, 86: 323-337.
- 21. Li B, Brown KV, Wenke JC, et al. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release, 2010, 145(3): 221-230.
- 22. Manoj Kumar R, Gupta P, Sharma SK, et al. Sustained drug release from surface modified UHMWPE for acetabular cup lining in total hip implant. Mater Sci Eng C Mater Biol Appl, 2017, 77: 649-661.
- 23. Shi M, Kretlow JD, Nguyen A, et al. Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials, 2010, 31(14): 4146-4156.
- 24. 肖月, 康梁, 吕庆, 等. 纳米载银抗菌剂与四针状氧化锌抗白色念珠菌的性能. 中国组织工程研究, 2013, 17(25): 4609-4615.
- 25. 吴建新, 李坤, 徐宁, 等. 多药缓释抗菌抗炎支架的制备与性能分析. 中国组织工程研究, 2019, 23(18): 2858-2864.
- 26. Zhao Q, Yi L, Jiang L, et al. Osteogenic activity and antibacterial ability on titanium surfaces modified with magnesium-doped titanium dioxide coating. Nanomedicine (Lond), 2019, 14(9): 1109-1133.
- 27. Gokcekaya O, Webster TJ, Ueda K, et al. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. Mater Sci Eng C Mater Biol Appl, 2017, 77: 556-564.
- 28. Cochis A, Azzimonti B, Della Valle C, et al. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. J Biomed Mater Res A, 2015, 103(3): 1176-1187.
- 29. Braem A, De Cremer K, Delattin N, et al. Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces, 2015, 126: 481-488.
- 30. 李根, 李丽梅, 蒋佳兴, 等. 均相自发泡法制备抗菌多孔复合骨修复支架. 功能材料, 2016, 47(6): 6176-6180.
- 31. Lu Y, Li L, Zhu Y, et al. Multifunctional Copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Appl Mater Interfaces, 2018, 10(1): 127-138.
- 32. Ambrose CG, Clyburn TA, Mika J, et al. Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections. J Bone Joint Surg (Am), 2014, 96(2): 128-134.
- 33. Hamid Reza BAKHSHESHI-RAD, Ehsan DAYAGHI, Ahmad Fauzi ISMAIL, et al. Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering. Trans Nonferrous Met Soc China, 2019, 29(5): 984-996.
- 34. 赵朝勇, 张雪峰, 张磊, 等. 银含量对多孔钛微观结构和力学性能的影响. 钢铁钒钛, 2018, 39(3): 40-45.
- 35. Dong J, Zhang S, Liu H, et al. Novel alternative therapy for spinal tuberculosis during surgery: reconstructing with anti-tuberculosis bioactivity implants. Expert Opin Drug Deliv, 2014, 11(3): 299-305.
- 36. 范剑波, 常山, 董咪娜, 等. 表面矿化的载银纳米羟基磷灰石/聚酰胺 66 抗菌多孔支架研究. 生物医学工程学杂志, 2012, 29(6): 1119-1124.
- 37. Zhou W, Peng X, Ma Y, et al. Two-staged Time-dependent materials for the prevention of implant-related infections. Acta Biomater, 2020, 101: 128-140.
- 38. Iviglia G, Cassinelli C, Bollati D, et al. Engineered porous scaffolds for periprosthetic infection prevention. Mater Sci Eng C Mater Biol Appl, 2016, 68: 701-715.
- 39. Sethmann I, Völkel S, Pfeifer F, et al. Development of phosphatized calcium carbonate biominerals as bioactive bone graft substitute materials, Part Ⅱ: functionalization with antibacterial silver ions. J Funct Biomater, 2018, 9(4): E67.
- 40. Yuan J, Wang B, Han C, et al. In vitro comparison of three rifampicin loading methods in a reinforced porous β-tricalcium phosphate scaffold. J Mater Sci Mater Med, 2015, 26(4): 174.
- 41. Aw MS, Simovic S, Addai-Mensah J, et al. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine (Lond), 2011, 6(7): 1159-1173.
- 42. Doll K, Fadeeva E, Schaeske J, et al. Development of laser-structured liquid-infused titanium with strong biofilm-repellent properties. ACS Appl Mater Interfaces, 2017, 9(11): 9359-9368.
- 43. Gasik M, Van Mellaert L, Pierron D, et al. Reduction of biofilm infection risks and promotion of osteointegration for optimized surfaces of titanium implants. Adv Healthc Mater, 2012, 1(1): 117-127.
- 44. Wang GH, Fu H, Zhao YZ, et al. One integration properties of antibacterial biomimetic porous titanium implants. Trans Nonferrous Met Soc China, 2017, 27(9): 2007-2014.
- 45. Zhang X, Jia W, Gu Y, et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials, 2010, 31(22): 5865-5874.
- 46. David N, Nallaiyan R. Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on Titanium against chronic osteomyelitis infection. Int J Biol Macromol, 2018, 110: 206-214.
- 47. Deng L, He X, Xie K, et al. Dual therapy coating on micro/nanoscale porous polyetheretherketone to eradicate biofilms and accelerate bone tissue repair. Macromol Biosci, 2019, 19(2): e1800376.
- 48. Dong J, Zhang S, Ma J, et al. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PLoS One, 2014, 9(4): e94937.
- 49. Zhu M, Li K, Zhu Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater, 2015, 16: 145-155.
- 50. Aguilar-Colomer A, Doadrio JC, Pérez-Jorge C, et al. Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. J Antibiot (Tokyo), 2017, 70(3): 259-263.
- 51. Badar M, Rahim MI, Kieke M, et al. Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J Biomed Mater Res A, 2015, 103(6): 2141-2149.
- 52. Yang CC, Lin CC, Liao JW, et al. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C Mater Biol Appl, 2013, 33(4): 2203-2212.
- 53. Parent M, Magnaudeix A, Delebassée S, et al. Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation. J Biomater Appl, 2016, 31(4): 488-498.
- 54. Gimeno M, Pinczowski P, Vázquez FJ, et al. Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int J Pharm, 2013, 452(1-2): 166-172.
- 55. Zhang T, Zhou WH, Jia ZJ, et al. Polydopamine-assisted functionalization of heparin and vancomycin onto microarc-oxidized 3D printed porous Ti6Al3V for improved hemocompatibility, osteogenic and anti-infection potencies. Science China Materials, 2018, 61(4): 579-592.
- 56. 刘楠, 赵黎, 胡玲珑, 等. 孔径及壳聚糖对多孔 β-TCP 中庆大霉素释放的影响. 现代生物医学进展, 2012, 12(32): 6207-6213.
- 57. 梁伟, 徐建, 葛淑华, 等. 载药脂质体复合缺钙磷灰石骨水泥支架的研究. 无机化学学报, 2012, 28(7): 1397-1402.
- 58. Bakhshandeh S, Gorgin Karaji Z, Lietaert K, et al. Simultaneous delivery of multiple antibacterial agents from additively manufactured porous biomaterials to fully eradicate planktonic and adherent Staphylococcus aureus. ACS Appl Mater Interfaces, 2017, 9(31): 25691-25699.
- 59. Xu Z, Chen X, Tan R, et al. Preparation and characterization of a gallium-loaded antimicrobial artificial dermal scaffold. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110063.
- 60. Pandey A, Midha S, Sharma RK, et al. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater Sci Eng C Mater Biol Appl, 2018, 88: 13-24.
- 61. Durgalakshmi D, Balakumar S, Raja CA, et al. Structural, morphological and antibacterial investigation of Ag-impregnated sol-gel-derived 45S5 nanobioglass systems. J Nanosci Nanotechnol, 2015, 15(6): 4285-4295.
- 62. Wu X, Li J, Wang L, et al. The release properties of silver ions from Ag-nHA/TiO2/PA66 antimicrobial composite scaffolds. Biomed Mater, 2010, 5(4): 044105.
- 63. Shih SJ, Tzeng WL, Jatnika R, et al. Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B Appl Biomater, 2015, 103(4): 899-907.
- 64. Deng Y, Yang L, Huang X, et al. Dual Ag/ZnO-decorated micro-/nanoporous sulfonated polyetheretherketone with superior antibacterial capability and biocompatibility via layer-by-layer self-assembly strategy. Macromol Biosci, 2018, 18(7): e1800028.
- 65. Liu W, Li J, Cheng M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 2019, 208: 8-20.
- 66. Mahmoudi M, Zhao M, Matsuura Y, et al. Infection-resistant MRI-visible scaffolds for tissue engineering applications. Bioimpacts, 2016, 6(2): 111-115.
- 67. Chimutengwende-Gordon M, Pendegrass C, Blunn G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses. Bone Joint J, 2017, 99-B(3): 393-400.
- 68. Amin Yavari S, Loozen L, Paganelli FL, et al. Antibacterial behavior of additively manufactured porous titanium with nanotubular surfaces releasing silver ions. ACS Appl Mater Interfaces, 2016, 8(27): 17080-17089.
- 69. Croes M, Bakhshandeh S, van Hengel IAJ, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater, 2018, 81: 315-327.
- 70. van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017, 140: 1-15.
- 71. D’Britto V, Kapse H, Babrekar H, et al. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive. Nanoscale, 2011, 3(7): 2957-2963.
- 72. Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater, 2012, 8(2): 904-915.
- 73. He X, Zhang X, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings. Biomed Mater, 2016, 11(4): 045008.
- 74. Necula BS, van Leeuwen JP, Fratila-Apachitei LE, et al. In vitro cytotoxicity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater, 2012, 8(11): 4191-4197.
- 75. Scavone M, Armentano I, Fortunati E, et al. Antimicrobial properties and cytocompatibility of PLGA/Ag nanocomposites. Materials (Basel), 2016, 9(1): E37.
- 76. Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Sci Eng C Mater Biol Appl, 2014, 45: 402-410.
- 77. 周艳艳, 张淑华, 李岳, 等. 载银多孔抗菌玻璃的研制. 光学技术, 2010, 36(3): 424-427.
- 78. 王会珍, 贺晓静, 王若云, 等. 锌锶共掺杂 TiO2 多孔涂层的抗菌及生物相容性. 中国表面工程, 2017, 30(2): 20-26.
- 79. 张宇承, 张文云, 宝福凯, 等. 多孔 HAPw/n-ZnO 骨修复材料的抗菌机理及抗生物膜研究. 口腔医学研究, 2016, 32(10): 1010-1014.
- 80. 耿振华, 李静松, 张翔宇. Ag 掺杂多孔 TiO2 涂层耐腐蚀性与抗菌性研究. 热加工工艺, 2016, 45(18): 139-141.
- 81. 崔冉, 魏媛媛, 陈晶晶, 等. Cu/PAA 的制备及其抗菌性能研究. 工业微生物, 2019, 49(3): 13-18.
- 82. 杨维佳, 郝亚敏, 闫翎鹏, 等. 多孔碳微球负载纳米银的制备及抗菌性能. 太原理工大学学报, 2014, 45(3): 285-290.
- 83. 侑宜森田, 和夫藤井, 尾池和樹, 等. Zn 置換 Hydrotalcite の歯周病関連菌産生 H2Sの吸着効果と抗菌作用. 日本歯科理工学会誌, 2019, 38(2): 109-118.
- 84. 余森, 于振涛, 韩建业, 等. 纯钛表面两步电化学法制备载银多孔涂层. 中国表面工程, 2013, 26(5): 83-89.
- 85. 李慕勤, Asmaa Alzalab, 新朋礼, 等. 纯钛超声微弧氧化-化学镀铜涂层的制备及抗菌性. 材料保护, 2016, 49(12): 13-16, 21.
- 86. 缪玲玲, 杜文姬, 胡耀娟, 等. 微波水热法合成纳米氧化铜及抗菌性能. 化工时刊, 2013, 27(8): 10-13.
- 87. 余森, 于振涛, 韩建业, 等. Ti-6Al-4V 医用钛合金表面载银涂层的制备和抗菌性能研究. 生物医学工程与临床, 2013, 17(6): 517-522.
- 88. 王静, 孙凤莲, 孟祥才, 等. 钛金属表面微弧氧化处理制备抗菌性生物活性涂层. 金属热处理, 2012, 37(8): 50-54.
- 89. 周冠军, 杨大鹏, 刘新芳, 等. 纳米银羟基磷灰石涂层正畸陶瓷托槽的抗菌与力学性能. 中国组织工程研究, 2015, 19(52): 8423-8427.
- 90. 李艳琼, 余巍, 张俊敏, 等. Ag/TiO2 纳米复合材料的结构及抗菌性能研究. 贵金属, 2011, 32(4): 24-28.
- 91. 张静莹, 孙慎霞, 齐民, 等. 含锌羟基磷灰石二氧化钛复合涂层的抗菌性能. 中国组织工程研究, 2012, 16(38): 7092-7095.
- 92. 廖航, 姚玉龙, 缪新新, 等. 纳米氧化锌在骨科中的应用前景. 中国矫形外科杂志, 2017, 25(18): 1675-1678.
- 93. Zhang J, Wei W, Yang L, et al. Stimulation of cell responses and bone ingrowth into macro-microporous implants of nano-bioglass/polyetheretherketone composite and enhanced antibacterial activity by release of hinokitiol. Colloids Surf B Biointerfaces, 2018, 164: 347-357.
- 94. Mueller B, Treccani L, Rezwan K. Antibacterial active open-porous hydroxyapatite/lysozyme scaffolds suitable as bone graft and depot for localised drug delivery. J Biomater Appl, 2017, 31(8): 1123-1134.
- 95. Prabhawathi V, Boobalan T, Sivakumar PM, et al. Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique. PLoS One, 2014, 9(5): e96152.
- 96. Yang C, Ouyang L, Wang W, et al. Sodium butyrate-modified sulfonated polyetheretherketone modulates macrophage behavior and shows enhanced antibacterial and osteogenic functions during implant-associated infections. J Mater Chem B, 2019, 7(36): 5541-5553.
- 97. 雷文茜, 任科峰, 陈夏超, 等. 动态多孔海绵结构多层膜负载溶菌酶用于抗菌涂层的研究. 高分子学报, 2017, 5(5): 744-751.
- 98. 朱婷, 陈海燕, 徐维超, 等. PS-b-PAA/PLA 有序多孔抗菌膜. 膜科学与技术, 2015, 35(4): 1-6.
- 99. Wu Y, Zitelli JP, TenHuisen KS, et al. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials, 2011, 32(4): 951-960.
- 100. Whitehead KA, Verran J. The effect of surface topography on the retention of microorganisms. Food and Bioproducts Processing, 2006, 84(4): 253-259.
- 101. Vimbela G, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine, 2017, 12: 3941-3965.