• 1. College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou Gansu, 730070, P. R. China;
  • 2. Institute of Orthopedics, Lanzhou General Hospital of Lanzhou Military Command of Chinese PLA;
ZHAOHongbin, Email: zhao761032@163.com
Export PDF Favorites Scan Get Citation

Objective To fabricate salidroside/collagen/polycaprolactone (PCL) nerve conduit composite and to investigate the effect of composite nerve conduits for repairing sciatic nerve defect. Methods The salidroside microspheres were prepared by W/O/W method, and the sustained release rate of microspheres was detected. The microspheres containing 10, 20, and 40 μg salidroside were mixed with collagen to prepare the nerve conduit core layer by freeze-drying method. The shell layer of collagen/PCL scaffold material was fabricated by electrospinning technology. The genipin cross-linked salidroside/collagen/PCL nerve conduit composite was prepared. The structure of nerve conduit was observed before and after cross-linked by scanning electron microscope. Thirty-eight Wistar rats were used to make the right sciatic nerve defect model of 15 mm in length, and randomly divided into groups A, B, C, D (n=9), and group E (n=2), then defect was repaired with the collagen/PCL conduit in group A, autologous nerve in group E, the 10, 20, and 40 μg/mL salidroside/collagen/PCL conduit in groups B, C, and D, respectively. The survival of rats was observed. The sciatic functional index (SFI) was evaluated at 1, 3, and 6 months after operation. At 6 months, the tissue of defect area was harvested for the general, electrophysiology, histological, and immunohistochemical[S-100 and peripheral myelin protein 0(P0)] staining observations. Results Salidroside microspheres showed burst release at 3 days, and then it tended to be stable at 13 days and lasted for 16 days, with a cumulative release rate of 76.59%. SEM showed that the disordered fiber of nerve conduit shell layer after crosslinking became conglutination, shrinkage, and density, and had void. The channels of core layer were clearly visible before and after crosslinking. The rats had no infection or death after operation. The SFI of group E was significantly higher than that of groups A, B, C, and D at 1, 3, and 6 months (P<0.05); it was significantly higher in groups B, C, and D than group A (P<0.05), but no significant difference was found among groups B, C, and D at 1 month (P>0.05); there was no significant difference in SFI among groups A, B, C, and D at 3 months (P>0.05); SFI was significantly higher in group C than groups A, B, and D and in groups A and B than group D (P<0.05), but no significant difference between groups A and B (P>0.05) at 6 months. In addition, no significant difference was shown among different time points in the other groups (P>0.05) except groups C and E at 1, 3, and 6 months (P<0.05). The general observation showed that good connection with the thick nerve in groups B and C, and connection with the fine nerves in groups A and D. The conduit materials obviously degraded. Nerve electrophysiological examination showed that the latency/conduction velocity of groups C and E were significantly lower than those of groups A, B, and D (P<0.05), but difference was not significant between groups C and E, and among groups A, B, and D (P>0.05). The histological observation showed that the nerve fiber tissue of groups B, C, and E was obviously more than that of groups A and D, and group C was similar to group E in the nerve fiber arrangement, and the core layer material of each group was completely degraded. Immunohistochemical staining showed that S-100 and P0 proteins expressed in all groups; and the expression level of groups B, C, and E was significantly higher than that of groups A and D, and gradually increased (P<0.05); difference in S-100 expression level was not significant between groups A and D (P>0.05), and P0 expression level of group A was significantly lower than that of group D (P<0.05). Conclusion Salidroside/collagen/PCL nerve conduit can promote sciatic nerve defect repair.

Citation: SONGXuewen, WEIYanming, LIGen, QINWen, WANGWei, ZHANGXiaomin, ZHAOHongbin. EXPERIMENTAL STUDIES ON EFFECTS OF SALIDROSIDE/COLLAGEN/ POLYCAPROLACTONE NERVE GUIDE CONDUITS FOR REPAIRING SCIATIC NERVE DEFECT IN RATS. Chinese Journal of Reparative and Reconstructive Surgery, 2016, 30(5): 634-640. doi: 10.7507/1002-1892.20160127 Copy

Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved

  • Previous Article

    EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS
  • Next Article

    ROLE OF Smad4 ON FIBROSIS OF TENDON DERIVED FIBROBLASTS INDUCED BY TRANSFORMING GROWTH FACTOR β1 BY TARGETED REGULATION OF miRNA219-5P