1. |
Fisher MB, Mauck RL. Tissue engineering and regenerative medicine:recent innovations and the transition to translation. Tissue Eng Part B Rev, 2013, 19(1):1-13.
|
2. |
O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3):88-95.
|
3. |
Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res, 2011, 4(5):685-698.
|
4. |
Zeugolis DI, Paul GR, Attenburrow G. Cross-linking of extruded collagen fibers-a biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A, 2009, 89(4):895-908.
|
5. |
李莉, 徐源廷, 陈健, 等. 氧化海藻酸钠交联改性脱细胞基质材料及其细胞相容性研究. 生物医学工程学杂志, 2011, 28(6):1154-1158.
|
6. |
He L, Mu C, Shi J, et al. Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol, 2011, 48(2):354-359.
|
7. |
Lü X, Zhai W, Zhou Y, et al. Crosslinking effect of Nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering. J Mater Sci Mater Med, 2010, 21(2):473-480.
|
8. |
Koch H, Graneist C, Emmrich F, et al. Xenogenic esophagus scaffolds fixed with several agents:comparative in vivo study of rejection and inflammation. J Biomed Biotechnol, 2012, 2012:948320.
|
9. |
Lü JM, Nurko J, Weakley SM, et al. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives:an update. Med Sci Monit, 2010, 16(5):RA93-100.
|
10. |
Yang C, Xu L, Zhou Y, et al. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers, 2010, 82(4):1297-1305.
|
11. |
Chan BP. Biomedical applications of photochemistry. Tissue Eng Part B Rev, 2010, 16(5):509-522.
|
12. |
Ramesh B, Mathapati S, Galla S, et al. Crosslinked acellular saphenous vein for small-diameter vascular graft. Asian Cardiovascular and Thoracic Annals, 2013, 21(3):293-302.
|
13. |
Lü WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials, 2010, 31(10):2934-2943.
|
14. |
Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev, 2002, 54(1):13-36.
|
15. |
Huang X, Zhang Y, Zhang X, et al. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl, 2013, 33(8):4816-4824.
|
16. |
Nho YC, Park JS, Lim YM. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, 2014, (94):176-180.
|
17. |
Zhou Y, Xu L, Zhang X, et al. Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering. Materials Science and Engineering:C, 2012, 32(4):994-1000.
|
18. |
Koob TJ, Hernandez DJ. Material properties of polymerized NDGA-collagen composite fibers:development of biologically based tendon constructs. Biomaterials, 2002, 23(1):203-212.
|
19. |
Koob TJ, Hernandez DJ. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials, 2003, 24(7):1285-1292.
|
20. |
Yu M, Hwang J, Deming TJ. Role of L-3, 4-Dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc, 1999, 121(4):5825-5826.
|
21. |
Ju YM, Yu B, Koob TJ, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J Biomed Mater Res A, 2008, 87(1):136-146.
|
22. |
Ju YM, Yu B, West L, et al. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. Ⅱ. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA-or GA-crosslinked collagen scaffolds. J Biomed Mater Res A, 2010, 92(2):650-658.
|
23. |
Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol Pharm Bull, 1994, 17(12):1573-1576.
|
24. |
Djerassi C, Gray JD, Kincl FA. Naturally occurring oxygen heterocyclics. IX. isolation and characterization of genipin. J Org Chem, 1960, 25 (12):2174-2177.
|
25. |
Raiskup-Wolf F, Hoyer A, Spoerl E, et al. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus:long-term results. J Cataract Refract Surg, 2008, 34(5):796-801.
|
26. |
Nickerson MT, Farnworth R, Wagar E, et al. Some physical and microstructural properties of genipin-crosslinked gelatin-maltodextrin hydrogels. Int J Biol Macromol, 2006, 38(1):40-44.
|
27. |
Nickerson MT, Patel J, Heyd DV, et al. Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int J Biol Macromol, 2006, 39(4-5):298-302.
|
28. |
Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A:Polymer Chemistry, 2003, 41(24):3941-3953.
|
29. |
Silva SS, Motta A, Rodrigues MT, et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules, 2008, 9(10):2764-2774.
|
30. |
Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A, 2010, 95(2):465-475.
|
31. |
Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 2004, 5(1):162-168.
|
32. |
Chen YS, Chang JY, Cheng CY, et al. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005, 26(18):3911-3918.
|
33. |
Muzzarelli RA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009, 77(1):1-9.
|
34. |
王旻, 笪琳萃, 谢艳, 等. 京尼平作为交联剂在天然生物材料改性中的应用. 中国修复重建外科杂志, 2013, 27(5):558-563.
|
35. |
Sung HW, Chang Y, Liang IL, et al. Fixation of biological tissues with a naturally occurring crosslinking agent:fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res, 2000, 52(1):77-87.
|
36. |
Xu Y, Li L, Yu X, et al. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012, 87(2):1589-1595.
|
37. |
梁晔, 刘万顺, 韩宝芹, 等. 一种新型生物交联剂的制备及其性质. 中国海洋大学学报, 2008, 38(4):590-594.
|
38. |
Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18):3941-3951.
|
39. |
Draye JP, Delaey B, Van de Voorde A, et al. In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(1-3):99-107.
|
40. |
Draye JP, Delaey B, Van de Voorde A, et al. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998, 19(18):1677-1687.
|
41. |
Mateo C, Palomo JM, van Langen LM, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng, 2004, 86(3):273-276.
|
42. |
Konno K, Hirayama C, Yasui H, et al. Enzymatic activation of oleuropein:a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci U S A, 1999, 96(16):9159-9164.
|
43. |
Mitra T, Sailakshmi G, Gnanamani A, et al. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol, 2011, 48(2):276-285.
|
44. |
Lee H, Jeong C, Ghafoor K, et al. Oral delivery of insulin using chitosan capsules cross-linked with phytic acid. Biomed Mater Eng, 2011, 21(1):25-36.
|
45. |
何淑兰. 可降解海藻酸盐水凝胶的研究. 天津:天津大学, 2005.
|
46. |
Nie H, Shen X, Zhou Z, et al. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydrate Polymers, 2011, 85(3):681-686.
|
47. |
Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001, 22(6):511-521.
|
48. |
Gillette BM, Jensen JA, Wang M, et al. Dynamic hydrogels:switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv Mater, 2010, 22(6):686-691.
|
49. |
Janes KA, Fresneau MP, Marazuela A, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release, 2001, 73(2-3):255-267.
|
50. |
叶菁芸. 物理交联壳聚糖水凝胶的构建及复合大分子液晶的研究. 广州:暨南大学, 2012.
|
51. |
Han B, Jaurequi J, Tang BW, et al. Proanthocyanidin:a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A, 2003, 65(1):118-124.
|
52. |
Nuthong P, Benjakul S, Prodpran T. Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int J Biol Macromol, 2009, 44(2):143-148.
|
53. |
Zhai W, Lü X, Chang J, et al. Quercetin-crosslinked porcine heart valve matrix:mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater, 2010, 6(2):389-395.
|
54. |
Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev, 2007, 59(4-5):263-273.
|
55. |
Collighan RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins:biological significance and medical applications. Amino Acids, 2009, 36(4):659-670.
|
56. |
Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A, 2010, 16(8):2429-2440.
|
57. |
Jus S, Stachel I, Fairhead M, et al. Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 2012, 30(1):86-95.
|
58. |
Taddei P, Chiono V, Anghileri A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol Biosci, 2013, 13(11):1492-1510.
|
59. |
Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol, 2010, 22(5):697-706.
|
60. |
Teixeira LS, Feijen J, van Blitterswijk CA, et al. Enzyme-catalyzed crosslinkable hydrogels:emerging strategies for tissue engineering. Biomaterials, 2012, 33(5):1281-1290.
|
61. |
Sperinde JJ, Griffith LG. Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules, 1997, 30:5255-5264.
|
62. |
Stachel I, Schwarzenbolz U, Henle T, et al. Cross-linking of type I collagen with microbial transglutaminase:identification of cross-linking sites. Biomacromolecules, 2010, 11(3):698-705.
|
63. |
Verderio EA, Johnson T, Griffin M. Tissue transglutaminase in normal and abnormal wound healing:review article. Amino Acids, 2004, 26(4):387-404.
|
64. |
Westhaus E, Messersmith PB. Triggered release of calcium from lipid vesicles:a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials, 2001, 22(5):453-462.
|
65. |
Chau DY, Collighan RJ, Verderio EA, et al. The cellular response to transglutaminase-cross-linked collagen. Biomaterials, 2005, 26(33):6518-6529.
|
66. |
Lee PF, Bai Y, Smith RL, et al. Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater, 2013, 9(7):7178-7190.
|
67. |
Wen C, Lu L, Li X. Mechanically robust gelatin-alginate IPN hydrogels by a combination of enzymaticand ionic crosslinking approaches. Macromolecular Materials and Engineering, 2013, 299(4):504-513.
|