- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China;
Polyetheretherketone is one of the most commonly used materials for the production of orthopaedic implants, but the osseointegration capacity of polyetheretherketone is poor because of its bioinert surface, which greatly limits its clinical application. In recent years, scholars have carried out a lot of research on the modification of polyetheretherketone materials in order to improve its osseointegration capacity. At present, the modification of polyetheretherketone is mainly divided into surface modification and blend modification. Therefore, this paper summarizes the research progress of polyetheretherketone material modification technology and its influence on osseointegration from two aspects of surface modification and blend modification for polyetheretherketone materials used in the field of bone repair, so as to provide a reference for the improvement and transformation of polyetheretherketone materials for bone repair in the future.
Citation: ZHU Ce, FENG Ganjun, LIU Limin, SONG Yueming. Research progress on modification of polyetheretherketone materials for bone repair. West China Medical Journal, 2022, 37(10): 1441-1449. doi: 10.7507/1002-0179.202207078 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Eschbach L. Nonresorbable polymers in bone surgery. Injury, 2000, 31(Suppl 4): 22-27. |
2. | Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845-4869. |
3. | Buck E, Li H, Cerruti M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites. Macromol Biosci, 2020, 20(2): e1900271. |
4. | Bathala L, Majeti V, Rachuri N, et al. The role of polyether ether ketone (peek) in dentistry - a review. J Med Life, 2019, 12(1): 5-9. |
5. | Xu X, Li Y, Wang L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials, 2019, 212: 98-114. |
6. | Schätzle M, Männchen R, Balbach U, et al. Stability change of chemically modified sandblasted/acid-etched titanium palatal implants. A randomized-controlled clinical trial. Clin Oral Implants Res, 2009, 20(5): 489-495. |
7. | Sunarso, Tsuchiya A, Fukuda N, et al. Effect of micro-roughening of poly (ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration. J Biomater Sci Polym Ed, 2018, 29(12): 1375-1388. |
8. | Mahjoubi H, Buck E, Manimunda P, et al. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Acta Biomater, 2017, 47: 149-158. |
9. | Shimizu T, Fujibayashi S, Yamaguchi S, et al. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: in vitro and in vivo studies. Acta Biomater, 2016, 35: 305-317. |
10. | Torstrick FB, Evans NT, Stevens HY, et al. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK?. Clin Orthop Relat Res, 2016, 474(11): 2373-2383. |
11. | Cordero D, López-Álvarez M, Rodríguez-Valencia C, et al. In vitro response of pre-osteoblastic cells to laser microgrooved PEEK. Biomed Mater, 2013, 8(5): 055006. |
12. | Zheng Y, Xiong C, Wang Z, et al. A combination of CO2 laser and plasma surface modification of poly (etheretherketone) to enhance osteoblast response. Appl Surf Sci, 2015, 344: 79-88. |
13. | 王悦, 刘红. 聚醚醚酮生物复合材料表面改性的研究进展. 现代口腔医学杂志, 2019, 33(6): 360-364. |
14. | 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展. 广东工业大学学报, 2021, 38(2): 73-82. |
15. | Wang S, Deng Y, Yang L, et al. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. J Biomater Sci Polym Ed, 2018, 29(5): 520-542. |
16. | Lu T, Wen J, Qian S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials, 2015, 51: 173-183. |
17. | Zheng Y, Liu L, Ma Y, et al. Enhanced osteoblasts responses to surface-sulfonated polyetheretherketone via a single-step ultraviolet-initiated graft polymerization. Ind Eng Chem Res, 2018, 57(31): 10403-10410. |
18. | Khoury J, Maxwell M, Cherian RE, et al. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. J Biomed Mater Res B Appl Biomater, 2017, 105(3): 531-543. |
19. | Khoury J, Kirkpatrick S, Maxwell M, et al. Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Meth B, 2013, 307: 630-634. |
20. | Wang S, Yang Y, Li Y, et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant. Colloids Surf B Biointerfaces, 2019, 176: 38-46. |
21. | Ouyang L, Zhao Y, Jin G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials, 2016, 83: 115-126. |
22. | Hieda A, Uemura N, Hashimoto Y, et al. In vivo bioactivity of porous polyetheretherketone with a foamed surface. Dent Mater J, 2017, 36(2): 222-229. |
23. | 李中杰, 潘宇, 吴晓敏, 等. 聚醚醚酮材料表面改性后成骨效能的研究进展. 广东医学, 2019, 40(24): 3481-3484, 3488. |
24. | Mahjoubi H, Kinsella JM, Murshed M, et al. Surface modification of poly (D, L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry. ACS Appl Mater Interfaces, 2014, 6(13): 9975-9987. |
25. | Wu J, Li L, Fu C, et al. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation. Colloids Surf B Biointerfaces, 2018, 169: 233-241. |
26. | Zheng Y, Liu L, Xiong C, et al. Enhancement of bioactivity on modified polyetheretherketone surfaces with -COOH, -OH and -PO4H2 functional groups. Mater Lett, 2017, 213: 84-87. |
27. | Zhu C, He M, Mao L, et al. Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med, 2021, 19(1): 14. |
28. | Assem Y, Mobbs RJ, Pelletier MH, et al. Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic review and preclinical evaluation. Eur Spine J, 2017, 26(3): 593-605. |
29. | Zhu C, He M, Mao L, et al. Titanium interlayer-mediated hydroxyapatite-coated polyetheretherketone cage in transforaminal lumbar interbody fusion surgery. BMC Musculoskelet Disord, 2021, 22(1): 918. |
30. | Devine DM, Hahn J, Richards RG, et al. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition. J Biomed Mater Res B Appl Biomater, 2013, 101(4): 591-598. |
31. | Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater, 2017, 33(9): e348-e360. |
32. | Yang YJ, Tsou HK, Chen YH, et al. Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film. Mater Sci Eng C Mater Biol Appl, 2015, 57: 58-66. |
33. | Tsou HK, Hsieh PY, Chi MH, et al. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants. J Biomed Mater Res A, 2012, 100(10): 2787-2792. |
34. | Wen J, Lu T, Wang X, et al. In vitro and in vivo evaluation of silicate-coated polyetheretherketone fabricated by electron beam evaporation. ACS Appl Mater Interfaces, 2016, 8(21): 13197-13206. |
35. | Han CM, Jang TS, Kim HE, et al. Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein. J Biomed Mater Res A, 2014, 102(3): 793-800. |
36. | Hahn BD, Lee JM, Park DS, et al. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater, 2009, 5(8): 3205-3214. |
37. | Hahn BD, Park DS, Choi JJ, et al. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl Surf Sci, 2013, 283: 6-11. |
38. | Lee JH, Jang HL, Lee KM, et al. Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. J Biomed Mater Res B Appl Biomater, 2017, 105(3): 647-657. |
39. | Lee JH, Jang HL, Lee KM, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater, 2013, 9(4): 6177-6187. |
40. | Sikder P, Grice CR, Lin B, et al. Single-phase, antibacterial trimagnesium phosphate hydrate coatings on polyetheretherketone (PEEK) implants by rapid microwave irradiation technique. ACS Biomater Sci Eng, 2018, 4(8): 2767-2783. |
41. | Ren Y, Sikder P, Lin B, et al. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater Sci Eng C Mater Biol Appl, 2018, 85: 107-113. |
42. | Ren Y, Babaie E, Lin B, et al. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy. Biomed Mater, 2017, 12(4): 045026. |
43. | Deng Y, Liu X, Xu A, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine, 2015, 10: 1425-1447. |
44. | Ambriz X, de Lanerolle P, Ambrosio JR. The mechanobiology of the actin cytoskeleton in stem cells during differentiation and interaction with biomaterials. Stem Cells Int, 2018, 2018: 2891957. |
45. | Evans NT, Torstrick FB, Lee CS, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater, 2015, 13: 159-167. |
46. | Torstrick FB, Safranski DL, Burkus JK, et al. Getting PEEK to stick to bone: the development of porous peek for interbody fusion devices. Tech Orthop, 2017, 32(3): 158-166. |
47. | Torstrick FB, Lin ASP, Potter D, et al. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials, 2018, 185: 106-116. |
48. | Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega, 2020, 5(41): 26655-26666. |
49. | Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel), 2017, 10(4): 334. |
50. | Gu X, Sun X, Sun Y, et al. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol, 2021, 8: 631616. |
51. | He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater, 2003, 2(8): 552-558. |
52. | Suska F, Omar O, Emanuelsson L, et al. Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: a rabbit model. J Biomater Appl, 2014, 29(2): 234-242. |
53. | Røkkum M, Reigstad A, Johansson CB, et al. Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups. Histopathology of ten specimens retrieved at reoperation after 0.3 to 5.8 years. J Bone Joint Surg Br, 2003, 85(3): 440-447. |
54. | Reigstad O, Johansson C, Stenport V, et al. Different patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks. J Biomed Mater Res B Appl Biomater, 2011, 99(1): 14-20. |
55. | Stübinger S, Drechsler A, Bürki A, et al. Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: a pilot study in sheep. J Biomed Mater Res B Appl Biomater, 2016, 104(6): 1182-1191. |
56. | Du Z, Wang C, Zhang R, et al. Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomedicine, 2020, 15: 7523-7551. |
57. | Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging, 2007, 11(2): 99-110. |
58. | Dai Y, Guo H, Chu L, et al. Promoting osteoblasts responses in vitro and improving osteointegration in vivo through bioactive coating of nanosilicon nitride on polyetheretherketone. J Orthop Translat, 2019, 24: 198-208. |
59. | Xu Z, Wu H, Wang F, et al. A hierarchical nanostructural coating of amorphous silicon nitride on polyetheretherketone with antibacterial activity and promoting responses of rBMSCs for orthopedic applications. J Mater Chem B, 2019, 7(39): 6035-6047. |
60. | Li N, Bai J, Wang W, et al. Facile and versatile surface functional polyetheretherketone with enhanced bacteriostasis and osseointegrative capability for implant application. ACS Appl Mater Interfaces, 2021, 13(50): 59731-59746. |
61. | Nabiyouni M, Ren Y, Bhaduri SB. Magnesium substitution in the structure of orthopedic nanoparticles: a comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites. Mater Sci Eng C Mater Biol Appl, 2015, 52: 11-17. |
62. | Hadley KB, Newman SM, Hunt JR. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem, 2010, 21(4): 297-303. |
63. | Lu T, Li J, Qian S, et al. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone. J Mater Chem B, 2016, 4(17): 2944-2953. |
64. | Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv Sci (Weinh), 2018, 5(10): 1800749. |
65. | Steinberg EL, Rath E, Shlaifer A, et al. Carbon fiber reinforced PEEK optima-a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater, 2013, 17: 221-228. |
66. | Elschner C, Noack C, Preißler C, et al. In vitro response of human mesenchymal stem cells to titanium coated peek films and their suitability for magnetic resonance imaging. J Mater Sci Technol, 2015, 31(5): 427-436. |
67. | Hoppe S, Albers CE, Elfiky T, et al. First results of a new vacuum plasma sprayed (VPS) titanium-coated carbon/PEEK composite cage for lumbar interbody fusion. J Funct Biomater, 2018, 9(1): 23. |
68. | Süss O, Kühn B, Mularski S. Fusion characteristics in ACDF with titanium-coated carbonfiber enhanced polyetheretherketone cages (tcCF/PEEK)//German Spine Society. 9th German Spine Conference Annual Meeting of the German Spine Society 11th to 13th December 2014, Leipzig, Germany. Leipzig: Eur Spine J, 2014: 2524-2525. |
69. | Garrison KR, Donell S, Ryder J, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess, 2007, 11(30): 1-150, iii-iv. |
70. | Guillot R, Pignot-Paintrand I, Lavaud J, et al. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater, 2016, 36: 310-322. |
71. | Klimo P Jr, Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J, 2009, 9(12): 959-966. |
72. | Shah NJ, Hyder MN, Moskowitz JS, et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med, 2013, 5(191): 191ra83. |
73. | Du Y, Zhang L, Ye X, et al. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK). Front Mater Sci, 2015, 9(1): 38-50. |
74. | Chen X, Garner SC, Quarles LD, et al. Effects of genistein on expression of bone markers during MC3T3-E1 osteoblastic cell differentiation. J Nutr Biochem, 2003, 14(6): 342-349. |
75. | Awasthi S, Pandey SK, Arunan E, et al. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J Mater Chem B, 2021, 9(2): 228-249. |
76. | Ma R, Guo D. Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite. J Orthop Surg Res, 2019, 14(1): 32. |
77. | Walsh WR, Pelletier MH, Bertollo N, et al. Does PEEK/HA enhance bone formation compared with peek in a sheep cervical fusion model?. Clin Orthop Relat Res, 2016, 474(11): 2364-2372. |
78. | Ching WY, Rulis P, Misra A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater, 2009, 5(8): 3067-3075. |
79. | Abu Bakar MS, Cheng MH, Tang SM, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003, 24(13): 2245-2250. |
80. | Tang SM, Cheang P, AbuBakar MS, et al. Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. Int J Fatigue, 2004, 26(1): 49-57. |
81. | von Wilmowsky C, Lutz R, Meisel U, et al. In vivo evaluation of β-TCP containing 3D laser sintered poly(ether ether ketone) composites in pigs. J Bioact Compat Pol, 2009, 24(2): 169-184. |
82. | von Wilmowsky C, Vairaktaris E, Pohle D, et al. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J Biomed Mater Res A, 2008, 87(4): 896-902. |
83. | Ma R, Tang S, Tan H, et al. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Appl Mater Interfaces, 2014, 6(15): 12214-12225. |
84. | Liu X, Morra M, Carpi A, et al. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother, 2008, 62(8): 526-529. |
85. | 薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能. 复合材料学报, 2022, 39(7): 3212-3223. |
86. | Yamane Y, Yabutsuka T, Takaoka Y, et al. Surface modification of carbon fiber-polyetheretherketone composite to impart bioactivity by using apatite nuclei. Materials (Basel), 2021, 14(21): 6691. |
87. | Tarallo L, Mugnai R, Adani R, et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol, 2014, 15(4): 277-283. |
88. | Kojic N, Rangger C, Özgün C, et al. Carbon-fibre-reinforced peek radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. Injury, 2017, 48(Suppl 5): S8-S11. |
- 1. Eschbach L. Nonresorbable polymers in bone surgery. Injury, 2000, 31(Suppl 4): 22-27.
- 2. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28(32): 4845-4869.
- 3. Buck E, Li H, Cerruti M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites. Macromol Biosci, 2020, 20(2): e1900271.
- 4. Bathala L, Majeti V, Rachuri N, et al. The role of polyether ether ketone (peek) in dentistry - a review. J Med Life, 2019, 12(1): 5-9.
- 5. Xu X, Li Y, Wang L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials, 2019, 212: 98-114.
- 6. Schätzle M, Männchen R, Balbach U, et al. Stability change of chemically modified sandblasted/acid-etched titanium palatal implants. A randomized-controlled clinical trial. Clin Oral Implants Res, 2009, 20(5): 489-495.
- 7. Sunarso, Tsuchiya A, Fukuda N, et al. Effect of micro-roughening of poly (ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration. J Biomater Sci Polym Ed, 2018, 29(12): 1375-1388.
- 8. Mahjoubi H, Buck E, Manimunda P, et al. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Acta Biomater, 2017, 47: 149-158.
- 9. Shimizu T, Fujibayashi S, Yamaguchi S, et al. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: in vitro and in vivo studies. Acta Biomater, 2016, 35: 305-317.
- 10. Torstrick FB, Evans NT, Stevens HY, et al. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK?. Clin Orthop Relat Res, 2016, 474(11): 2373-2383.
- 11. Cordero D, López-Álvarez M, Rodríguez-Valencia C, et al. In vitro response of pre-osteoblastic cells to laser microgrooved PEEK. Biomed Mater, 2013, 8(5): 055006.
- 12. Zheng Y, Xiong C, Wang Z, et al. A combination of CO2 laser and plasma surface modification of poly (etheretherketone) to enhance osteoblast response. Appl Surf Sci, 2015, 344: 79-88.
- 13. 王悦, 刘红. 聚醚醚酮生物复合材料表面改性的研究进展. 现代口腔医学杂志, 2019, 33(6): 360-364.
- 14. 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展. 广东工业大学学报, 2021, 38(2): 73-82.
- 15. Wang S, Deng Y, Yang L, et al. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. J Biomater Sci Polym Ed, 2018, 29(5): 520-542.
- 16. Lu T, Wen J, Qian S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials, 2015, 51: 173-183.
- 17. Zheng Y, Liu L, Ma Y, et al. Enhanced osteoblasts responses to surface-sulfonated polyetheretherketone via a single-step ultraviolet-initiated graft polymerization. Ind Eng Chem Res, 2018, 57(31): 10403-10410.
- 18. Khoury J, Maxwell M, Cherian RE, et al. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. J Biomed Mater Res B Appl Biomater, 2017, 105(3): 531-543.
- 19. Khoury J, Kirkpatrick S, Maxwell M, et al. Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instrum Meth B, 2013, 307: 630-634.
- 20. Wang S, Yang Y, Li Y, et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant. Colloids Surf B Biointerfaces, 2019, 176: 38-46.
- 21. Ouyang L, Zhao Y, Jin G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials, 2016, 83: 115-126.
- 22. Hieda A, Uemura N, Hashimoto Y, et al. In vivo bioactivity of porous polyetheretherketone with a foamed surface. Dent Mater J, 2017, 36(2): 222-229.
- 23. 李中杰, 潘宇, 吴晓敏, 等. 聚醚醚酮材料表面改性后成骨效能的研究进展. 广东医学, 2019, 40(24): 3481-3484, 3488.
- 24. Mahjoubi H, Kinsella JM, Murshed M, et al. Surface modification of poly (D, L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry. ACS Appl Mater Interfaces, 2014, 6(13): 9975-9987.
- 25. Wu J, Li L, Fu C, et al. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation. Colloids Surf B Biointerfaces, 2018, 169: 233-241.
- 26. Zheng Y, Liu L, Xiong C, et al. Enhancement of bioactivity on modified polyetheretherketone surfaces with -COOH, -OH and -PO4H2 functional groups. Mater Lett, 2017, 213: 84-87.
- 27. Zhu C, He M, Mao L, et al. Titanium-interlayer mediated hydroxyapatite coating on polyetheretherketone: a prospective study in patients with single-level cervical degenerative disc disease. J Transl Med, 2021, 19(1): 14.
- 28. Assem Y, Mobbs RJ, Pelletier MH, et al. Radiological and clinical outcomes of novel Ti/PEEK combined spinal fusion cages: a systematic review and preclinical evaluation. Eur Spine J, 2017, 26(3): 593-605.
- 29. Zhu C, He M, Mao L, et al. Titanium interlayer-mediated hydroxyapatite-coated polyetheretherketone cage in transforaminal lumbar interbody fusion surgery. BMC Musculoskelet Disord, 2021, 22(1): 918.
- 30. Devine DM, Hahn J, Richards RG, et al. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition. J Biomed Mater Res B Appl Biomater, 2013, 101(4): 591-598.
- 31. Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater, 2017, 33(9): e348-e360.
- 32. Yang YJ, Tsou HK, Chen YH, et al. Enhancement of bioactivity on medical polymer surface using high power impulse magnetron sputtered titanium dioxide film. Mater Sci Eng C Mater Biol Appl, 2015, 57: 58-66.
- 33. Tsou HK, Hsieh PY, Chi MH, et al. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants. J Biomed Mater Res A, 2012, 100(10): 2787-2792.
- 34. Wen J, Lu T, Wang X, et al. In vitro and in vivo evaluation of silicate-coated polyetheretherketone fabricated by electron beam evaporation. ACS Appl Mater Interfaces, 2016, 8(21): 13197-13206.
- 35. Han CM, Jang TS, Kim HE, et al. Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein. J Biomed Mater Res A, 2014, 102(3): 793-800.
- 36. Hahn BD, Lee JM, Park DS, et al. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater, 2009, 5(8): 3205-3214.
- 37. Hahn BD, Park DS, Choi JJ, et al. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl Surf Sci, 2013, 283: 6-11.
- 38. Lee JH, Jang HL, Lee KM, et al. Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. J Biomed Mater Res B Appl Biomater, 2017, 105(3): 647-657.
- 39. Lee JH, Jang HL, Lee KM, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater, 2013, 9(4): 6177-6187.
- 40. Sikder P, Grice CR, Lin B, et al. Single-phase, antibacterial trimagnesium phosphate hydrate coatings on polyetheretherketone (PEEK) implants by rapid microwave irradiation technique. ACS Biomater Sci Eng, 2018, 4(8): 2767-2783.
- 41. Ren Y, Sikder P, Lin B, et al. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater Sci Eng C Mater Biol Appl, 2018, 85: 107-113.
- 42. Ren Y, Babaie E, Lin B, et al. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy. Biomed Mater, 2017, 12(4): 045026.
- 43. Deng Y, Liu X, Xu A, et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine, 2015, 10: 1425-1447.
- 44. Ambriz X, de Lanerolle P, Ambrosio JR. The mechanobiology of the actin cytoskeleton in stem cells during differentiation and interaction with biomaterials. Stem Cells Int, 2018, 2018: 2891957.
- 45. Evans NT, Torstrick FB, Lee CS, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater, 2015, 13: 159-167.
- 46. Torstrick FB, Safranski DL, Burkus JK, et al. Getting PEEK to stick to bone: the development of porous peek for interbody fusion devices. Tech Orthop, 2017, 32(3): 158-166.
- 47. Torstrick FB, Lin ASP, Potter D, et al. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials, 2018, 185: 106-116.
- 48. Feng X, Ma L, Liang H, et al. Osteointegration of 3D-printed fully porous polyetheretherketone scaffolds with different pore sizes. ACS Omega, 2020, 5(41): 26655-26666.
- 49. Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel), 2017, 10(4): 334.
- 50. Gu X, Sun X, Sun Y, et al. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol, 2021, 8: 631616.
- 51. He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater, 2003, 2(8): 552-558.
- 52. Suska F, Omar O, Emanuelsson L, et al. Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: a rabbit model. J Biomater Appl, 2014, 29(2): 234-242.
- 53. Røkkum M, Reigstad A, Johansson CB, et al. Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups. Histopathology of ten specimens retrieved at reoperation after 0.3 to 5.8 years. J Bone Joint Surg Br, 2003, 85(3): 440-447.
- 54. Reigstad O, Johansson C, Stenport V, et al. Different patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks. J Biomed Mater Res B Appl Biomater, 2011, 99(1): 14-20.
- 55. Stübinger S, Drechsler A, Bürki A, et al. Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: a pilot study in sheep. J Biomed Mater Res B Appl Biomater, 2016, 104(6): 1182-1191.
- 56. Du Z, Wang C, Zhang R, et al. Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomedicine, 2020, 15: 7523-7551.
- 57. Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging, 2007, 11(2): 99-110.
- 58. Dai Y, Guo H, Chu L, et al. Promoting osteoblasts responses in vitro and improving osteointegration in vivo through bioactive coating of nanosilicon nitride on polyetheretherketone. J Orthop Translat, 2019, 24: 198-208.
- 59. Xu Z, Wu H, Wang F, et al. A hierarchical nanostructural coating of amorphous silicon nitride on polyetheretherketone with antibacterial activity and promoting responses of rBMSCs for orthopedic applications. J Mater Chem B, 2019, 7(39): 6035-6047.
- 60. Li N, Bai J, Wang W, et al. Facile and versatile surface functional polyetheretherketone with enhanced bacteriostasis and osseointegrative capability for implant application. ACS Appl Mater Interfaces, 2021, 13(50): 59731-59746.
- 61. Nabiyouni M, Ren Y, Bhaduri SB. Magnesium substitution in the structure of orthopedic nanoparticles: a comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites. Mater Sci Eng C Mater Biol Appl, 2015, 52: 11-17.
- 62. Hadley KB, Newman SM, Hunt JR. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem, 2010, 21(4): 297-303.
- 63. Lu T, Li J, Qian S, et al. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone. J Mater Chem B, 2016, 4(17): 2944-2953.
- 64. Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv Sci (Weinh), 2018, 5(10): 1800749.
- 65. Steinberg EL, Rath E, Shlaifer A, et al. Carbon fiber reinforced PEEK optima-a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater, 2013, 17: 221-228.
- 66. Elschner C, Noack C, Preißler C, et al. In vitro response of human mesenchymal stem cells to titanium coated peek films and their suitability for magnetic resonance imaging. J Mater Sci Technol, 2015, 31(5): 427-436.
- 67. Hoppe S, Albers CE, Elfiky T, et al. First results of a new vacuum plasma sprayed (VPS) titanium-coated carbon/PEEK composite cage for lumbar interbody fusion. J Funct Biomater, 2018, 9(1): 23.
- 68. Süss O, Kühn B, Mularski S. Fusion characteristics in ACDF with titanium-coated carbonfiber enhanced polyetheretherketone cages (tcCF/PEEK)//German Spine Society. 9th German Spine Conference Annual Meeting of the German Spine Society 11th to 13th December 2014, Leipzig, Germany. Leipzig: Eur Spine J, 2014: 2524-2525.
- 69. Garrison KR, Donell S, Ryder J, et al. Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess, 2007, 11(30): 1-150, iii-iv.
- 70. Guillot R, Pignot-Paintrand I, Lavaud J, et al. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater, 2016, 36: 310-322.
- 71. Klimo P Jr, Peelle MW. Use of polyetheretherketone spacer and recombinant human bone morphogenetic protein-2 in the cervical spine: a radiographic analysis. Spine J, 2009, 9(12): 959-966.
- 72. Shah NJ, Hyder MN, Moskowitz JS, et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med, 2013, 5(191): 191ra83.
- 73. Du Y, Zhang L, Ye X, et al. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK). Front Mater Sci, 2015, 9(1): 38-50.
- 74. Chen X, Garner SC, Quarles LD, et al. Effects of genistein on expression of bone markers during MC3T3-E1 osteoblastic cell differentiation. J Nutr Biochem, 2003, 14(6): 342-349.
- 75. Awasthi S, Pandey SK, Arunan E, et al. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J Mater Chem B, 2021, 9(2): 228-249.
- 76. Ma R, Guo D. Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite. J Orthop Surg Res, 2019, 14(1): 32.
- 77. Walsh WR, Pelletier MH, Bertollo N, et al. Does PEEK/HA enhance bone formation compared with peek in a sheep cervical fusion model?. Clin Orthop Relat Res, 2016, 474(11): 2364-2372.
- 78. Ching WY, Rulis P, Misra A. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite. Acta Biomater, 2009, 5(8): 3067-3075.
- 79. Abu Bakar MS, Cheng MH, Tang SM, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003, 24(13): 2245-2250.
- 80. Tang SM, Cheang P, AbuBakar MS, et al. Tension-tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. Int J Fatigue, 2004, 26(1): 49-57.
- 81. von Wilmowsky C, Lutz R, Meisel U, et al. In vivo evaluation of β-TCP containing 3D laser sintered poly(ether ether ketone) composites in pigs. J Bioact Compat Pol, 2009, 24(2): 169-184.
- 82. von Wilmowsky C, Vairaktaris E, Pohle D, et al. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J Biomed Mater Res A, 2008, 87(4): 896-902.
- 83. Ma R, Tang S, Tan H, et al. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Appl Mater Interfaces, 2014, 6(15): 12214-12225.
- 84. Liu X, Morra M, Carpi A, et al. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother, 2008, 62(8): 526-529.
- 85. 薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能. 复合材料学报, 2022, 39(7): 3212-3223.
- 86. Yamane Y, Yabutsuka T, Takaoka Y, et al. Surface modification of carbon fiber-polyetheretherketone composite to impart bioactivity by using apatite nuclei. Materials (Basel), 2021, 14(21): 6691.
- 87. Tarallo L, Mugnai R, Adani R, et al. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol, 2014, 15(4): 277-283.
- 88. Kojic N, Rangger C, Özgün C, et al. Carbon-fibre-reinforced peek radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. Injury, 2017, 48(Suppl 5): S8-S11.