- Department of Rehabilitation and Preventive Health Care, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P. R. China;
At present, coronavirus disease 2019 has become the most serious public health emergency in the world. The disease is still spreading around the world. The disease progresses rapidly and is highly contagious, causing great harm to the public health security of the world. Based on the research evidence published at home and abroad, this article systematically summarizes the biological structure of severe acute respiratory syndrome coronavirus 2, and the pathogenesis, transmission routes and susceptible populations, clinical features and treatment methods of coronavirus disease 2019. It aims to help medical workers understand coronavirus disease 2019 in order to better diagnose and treat the disease, and provide references for future research.
Citation: TANG Long, YAO Liqing. Progress in clinical research related to coronavirus disease 2019. West China Medical Journal, 2021, 36(2): 166-172. doi: 10.7507/1002-0179.202003302 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Kaswa R, Govender I. Novel coronavirus pandemic: a clinical overview. S Afr Fam Pract (2004), 2020, 62(1): e1-e5. |
2. | Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci, 2020, 21(7): 2657. |
3. | Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019, 17(3): 181-192. |
4. | Li W, Sui J, Huang IC, et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology, 2007, 367(2): 367-374. |
5. | Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223): 514-523. |
6. | Knoops K, Kikkert M, Worm SH, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol, 2008, 6(9): e226. |
7. | Duan L, Zheng Q, Zhang H, et al. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol, 2020, 11: 576622. |
8. | Zhou P, Yang XL, Wang XG, et al. Addendum: a pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 588(7836): E6. |
9. | Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 2020, 26(5): 681-687. |
10. | Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5): 1016-1035. e19. |
11. | Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res, 2020, 116(6): 1097-1100. |
12. | Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells, 2020, 9(7): 1652. |
13. | Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 2000, 87(5): E1-E9. |
14. | Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun, 2014, 5: 3594. |
15. | Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005, 11(8): 875-879. |
16. | Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904. e9. |
17. | Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263. |
18. | Aguila EJT, Cua IHY, Dumagpi JEL, et al. COVID-19 and its effects on the digestive system and endoscopy practice. JGH Open, 2020, 4(3): 324-331. |
19. | Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. (2020-01-31)[2020-10-07]. https://www.biorxiv.org/content/10.1101/2020.01.30.927806v1. |
20. | Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 2020, 395(10226): 809-815. |
21. | Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect, 2020, 53(3): 404-412. |
22. | Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol, 2020, 83: 104327. |
23. | 国家卫生健康委办公厅, 国家中医药管理局办公室. 关于印发新型冠状病毒肺炎诊疗方案(试行第八版)的通知. (2020-08-19)[2020-10-07]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=0a7bdf12bd4b46e5bd28ca7f9a7f5e5a. |
24. | Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720. |
25. | Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol, 2020, 77(6): 683-690. |
26. | Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020, 296(2): E32-E40. |
27. | Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020, 8(4): 420-422. |
28. | Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, et al. Covid-19 and kidney injury: pathophysiology and molecular mechanisms. Rev Med Virol, 2020, 6: e2176. |
29. | CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep, 2020, 69(12): 343-346. |
30. | 陈锋, 刘智胜, 张芙蓉, 等. 中国首例儿童危重型新型冠状病毒肺炎. 中华儿科杂志, 2020, 58: E005-E005. |
31. | 曾凌空, 陶旭炜, 袁文浩, 等. 中国首例新生儿新型冠状病毒肺炎. 中华儿科杂志, 2020, 58: E009-E009. |
32. | Wong KT, Antonio GE, Hui DS, et al. Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients. Radiology, 2003, 228(2): 401-406. |
33. | Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology, 2020, 295(1): 16-17. |
34. | Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology, 2020, 295(1): 210-217. |
35. | Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med, 2020, 8(9): 853-862. |
36. | Kumar P, Chander B. COVID 19 mortality: probable role of microbiome to explain disparity. Med Hypotheses, 2020, 144: 110209. |
37. | Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 2020, 26(6): 842-844. |
38. | Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5): 1036-1045.e9. |
39. | Rehman H, Ahmad MI. COVID-19: quarantine, isolation, and lifestyle diseases. Arch Physiol Biochem, 2020, 21: 1-5. |
40. | National Institutes of Health. COVID-19 treatment guidelines. (2021-01-04)[2021-01-04]. https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf. |
41. | Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med, 2020, 382(10): 929-936. |
42. | Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020, 30(3): 269-271. |
43. | Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 2020, 14(1): 69-71. |
44. | Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 2019, 11(4): 326. |
45. | Boriskin YS, Leneva IA, Pécheur EI, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem, 2008, 15(10): 997-1005. |
46. | Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect, 2020, 81(1): e1-e5. |
47. | Lian N, Xie H, Lin S, et al. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect, 2020, 26(7): 917-921. |
48. | Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238): 1695-1704. |
49. | Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis, 2015, 212(12): 1904-1913. |
50. | Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J, 2003, 9(6): 399-406. |
51. | Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med, 2020, 382(19): 1787-1799. |
52. | Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med, 2020, 383(21): 2041-2052. |
53. | Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA, 2020, 323(24): 2493-2502. |
54. | Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223): 473-475. |
55. | Auyeung TW, Lee JS, Lai WK, et al. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect, 2005, 51(2): 98-102. |
56. | Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun, 2020, 109: 102434. |
57. | Lim CC, Tan CS, Kaushik M, et al. Initiating acute dialysis at earlier acute kidney injury network stage in critically ill patients without traditional indications does not improve outcome: a prospective cohort study. Nephrology (Carlton), 2015, 20(3): 148-154. |
58. | Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus, 2015, 4: 709. |
59. | Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis, 2015, 211(1): 80-90. |
60. | Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolonetreatment in SARS patients. Clin Microbiol Infect, 2004, 10(7): 676-678. |
61. | Joyner MJ, Bruno KA, Klassen SA, et al. Safety update: COVID-19 convalescent plasma in 20, 000 hospitalized patients. Mayo Clin Proc, 2020, 95(9): 1888-1897. |
62. | Mascolo S, Carleo MA, Contieri M, et al. SARS-CoV-2 and inflammatory responses: from mechanisms to the potential therapeutic use of intravenous immunoglobulin. (2020-11-05)[2021-01-04]. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.26651. |
63. | Shao Z, Feng Y, Zhong L, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunol, 2020, 9(10): e1192. |
64. | Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A, 2020, 117(20): 10970-10975. |
65. | Teng F, Peng JM, Wang Q, et al. Successful treatment with tocilizumab in a patient with rapidly progressive interstitial lung disease with positive anti-melanoma differentiation-associated gene-5 antibody. (2020-11-25)[2021-01-04]. https://journals.lww.com/cmj/Citation/9000/Successful_treatment_with_tocilizumab_in_a_patient.98867.aspx. |
66. | 程德忠, 王文菊, 李毅, 等. 51 例新型冠状病毒肺炎患者应用中药连花清瘟疗效分析: 多中心回顾性研究. 天津中医药, 2020, 37(5): 509-516. |
67. | 杨志华, 闫海峰, 闫艳芳, 等. 基于网络药理学探讨双黄连口服液抑制新型冠状病毒(2019-nCoV)的分子机制研究. 中药材, 2020(9): 2333-2340. |
68. | 李春波, 苏韫, 刘永琦, 等. 清肺排毒汤治疗新型冠状病毒肺炎的中医理论及现代药理学机制. 中医杂志, 2020, 61(15): 1299-1302. |
69. | 余恒毅, 任秀华, 祁星星, 等. 阿比多尔、清肺排毒汤、连花清瘟胶囊、金叶败毒颗粒对某方舱医院轻型/普通型新冠肺炎患者疗效的回顾性研究. (2020-11-10)[2021-01-04]. https://doi.org/10.13412/j.cnki.zyyl.20201110.005. |
- 1. Kaswa R, Govender I. Novel coronavirus pandemic: a clinical overview. S Afr Fam Pract (2004), 2020, 62(1): e1-e5.
- 2. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci, 2020, 21(7): 2657.
- 3. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019, 17(3): 181-192.
- 4. Li W, Sui J, Huang IC, et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology, 2007, 367(2): 367-374.
- 5. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223): 514-523.
- 6. Knoops K, Kikkert M, Worm SH, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol, 2008, 6(9): e226.
- 7. Duan L, Zheng Q, Zhang H, et al. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol, 2020, 11: 576622.
- 8. Zhou P, Yang XL, Wang XG, et al. Addendum: a pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 588(7836): E6.
- 9. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 2020, 26(5): 681-687.
- 10. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5): 1016-1035. e19.
- 11. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res, 2020, 116(6): 1097-1100.
- 12. Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells, 2020, 9(7): 1652.
- 13. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 2000, 87(5): E1-E9.
- 14. Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun, 2014, 5: 3594.
- 15. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005, 11(8): 875-879.
- 16. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904. e9.
- 17. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
- 18. Aguila EJT, Cua IHY, Dumagpi JEL, et al. COVID-19 and its effects on the digestive system and endoscopy practice. JGH Open, 2020, 4(3): 324-331.
- 19. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. (2020-01-31)[2020-10-07]. https://www.biorxiv.org/content/10.1101/2020.01.30.927806v1.
- 20. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 2020, 395(10226): 809-815.
- 21. Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect, 2020, 53(3): 404-412.
- 22. Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol, 2020, 83: 104327.
- 23. 国家卫生健康委办公厅, 国家中医药管理局办公室. 关于印发新型冠状病毒肺炎诊疗方案(试行第八版)的通知. (2020-08-19)[2020-10-07]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=0a7bdf12bd4b46e5bd28ca7f9a7f5e5a.
- 24. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720.
- 25. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol, 2020, 77(6): 683-690.
- 26. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020, 296(2): E32-E40.
- 27. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020, 8(4): 420-422.
- 28. Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, et al. Covid-19 and kidney injury: pathophysiology and molecular mechanisms. Rev Med Virol, 2020, 6: e2176.
- 29. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep, 2020, 69(12): 343-346.
- 30. 陈锋, 刘智胜, 张芙蓉, 等. 中国首例儿童危重型新型冠状病毒肺炎. 中华儿科杂志, 2020, 58: E005-E005.
- 31. 曾凌空, 陶旭炜, 袁文浩, 等. 中国首例新生儿新型冠状病毒肺炎. 中华儿科杂志, 2020, 58: E009-E009.
- 32. Wong KT, Antonio GE, Hui DS, et al. Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients. Radiology, 2003, 228(2): 401-406.
- 33. Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology, 2020, 295(1): 16-17.
- 34. Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology, 2020, 295(1): 210-217.
- 35. Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and outcomes of 10 021 patients with COVID-19 admitted to 920 German hospitals: an observational study. Lancet Respir Med, 2020, 8(9): 853-862.
- 36. Kumar P, Chander B. COVID 19 mortality: probable role of microbiome to explain disparity. Med Hypotheses, 2020, 144: 110209.
- 37. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 2020, 26(6): 842-844.
- 38. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5): 1036-1045.e9.
- 39. Rehman H, Ahmad MI. COVID-19: quarantine, isolation, and lifestyle diseases. Arch Physiol Biochem, 2020, 21: 1-5.
- 40. National Institutes of Health. COVID-19 treatment guidelines. (2021-01-04)[2021-01-04]. https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf.
- 41. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med, 2020, 382(10): 929-936.
- 42. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020, 30(3): 269-271.
- 43. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 2020, 14(1): 69-71.
- 44. Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of inhibition of ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses, 2019, 11(4): 326.
- 45. Boriskin YS, Leneva IA, Pécheur EI, et al. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem, 2008, 15(10): 997-1005.
- 46. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect, 2020, 81(1): e1-e5.
- 47. Lian N, Xie H, Lin S, et al. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect, 2020, 26(7): 917-921.
- 48. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020, 395(10238): 1695-1704.
- 49. Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis, 2015, 212(12): 1904-1913.
- 50. Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J, 2003, 9(6): 399-406.
- 51. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med, 2020, 382(19): 1787-1799.
- 52. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N Engl J Med, 2020, 383(21): 2041-2052.
- 53. Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA, 2020, 323(24): 2493-2502.
- 54. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223): 473-475.
- 55. Auyeung TW, Lee JS, Lai WK, et al. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. J Infect, 2005, 51(2): 98-102.
- 56. Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun, 2020, 109: 102434.
- 57. Lim CC, Tan CS, Kaushik M, et al. Initiating acute dialysis at earlier acute kidney injury network stage in critically ill patients without traditional indications does not improve outcome: a prospective cohort study. Nephrology (Carlton), 2015, 20(3): 148-154.
- 58. Arabi Y, Balkhy H, Hajeer AH, et al. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus, 2015, 4: 709.
- 59. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis, 2015, 211(1): 80-90.
- 60. Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolonetreatment in SARS patients. Clin Microbiol Infect, 2004, 10(7): 676-678.
- 61. Joyner MJ, Bruno KA, Klassen SA, et al. Safety update: COVID-19 convalescent plasma in 20, 000 hospitalized patients. Mayo Clin Proc, 2020, 95(9): 1888-1897.
- 62. Mascolo S, Carleo MA, Contieri M, et al. SARS-CoV-2 and inflammatory responses: from mechanisms to the potential therapeutic use of intravenous immunoglobulin. (2020-11-05)[2021-01-04]. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.26651.
- 63. Shao Z, Feng Y, Zhong L, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunol, 2020, 9(10): e1192.
- 64. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A, 2020, 117(20): 10970-10975.
- 65. Teng F, Peng JM, Wang Q, et al. Successful treatment with tocilizumab in a patient with rapidly progressive interstitial lung disease with positive anti-melanoma differentiation-associated gene-5 antibody. (2020-11-25)[2021-01-04]. https://journals.lww.com/cmj/Citation/9000/Successful_treatment_with_tocilizumab_in_a_patient.98867.aspx.
- 66. 程德忠, 王文菊, 李毅, 等. 51 例新型冠状病毒肺炎患者应用中药连花清瘟疗效分析: 多中心回顾性研究. 天津中医药, 2020, 37(5): 509-516.
- 67. 杨志华, 闫海峰, 闫艳芳, 等. 基于网络药理学探讨双黄连口服液抑制新型冠状病毒(2019-nCoV)的分子机制研究. 中药材, 2020(9): 2333-2340.
- 68. 李春波, 苏韫, 刘永琦, 等. 清肺排毒汤治疗新型冠状病毒肺炎的中医理论及现代药理学机制. 中医杂志, 2020, 61(15): 1299-1302.
- 69. 余恒毅, 任秀华, 祁星星, 等. 阿比多尔、清肺排毒汤、连花清瘟胶囊、金叶败毒颗粒对某方舱医院轻型/普通型新冠肺炎患者疗效的回顾性研究. (2020-11-10)[2021-01-04]. https://doi.org/10.13412/j.cnki.zyyl.20201110.005.