- Institute of Nephrology, Central South University / Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P. R. China;
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus. One third of patients with advanced diabetes mellitus can develop to uremia, which seriously endangers people’s health. In recent years, with the improvement of people’s living standards and the increasing incidence of diabetes, it has become the main cause of end stage renal disease in China. Over the past two decades, the understanding of diagnosis and treatment of DKD has been improved, such as putting forward the new concept of normoalbuminuric DKD and developing a variety of new anti-diabetic drugs. However, at present, the basic strategies of DKD treatment are still lifestyle modification, glucose control, blood pressure control and lipid control.
Citation: HAN Yachun, SUN Lin. Progress in diagnosis and treatment of diabetic kidney disease. West China Medical Journal, 2019, 34(7): 813-822. doi: 10.7507/1002-0179.201906121 Copy
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 2018, 138: 271-281. |
2. | Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017, 317(24): 2515-2523. |
3. | Koye DN, Magliano DJ, Nelson RG, et al. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis, 2018, 25(2): 121-132. |
4. | Huang YM, Xu D, Long J, et al. Spectrum of chronic kidney disease in China: a national study based on hospitalized patients from 2010 to 2015. Nephrology (Carlton), 2019, 24(7): 725-736. |
5. | Liu ZH. Nephrology in China. Nat Rev Nephrol, 2013, 9(9): 523-528. |
6. | Gheith O, Farouk N, Nampoory N, et al. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol, 2016, 5(1): 49-56. |
7. | A/L B Vasanth Rao VR, Tan SH, Candasamy M, et al. Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr, 2019, 13(1): 754-762. |
8. | American Diabetes Association. 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S124-S138. |
9. | Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA, 2016, 316(6): 602-610. |
10. | de Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA, 2011, 305(24): 2532-2539. |
11. | Pavkov ME, Mason CC, Bennett PH, et al. Change in the distribution of albuminuria according to estimated glomerular filtration rate in Pima Indians with type 2 diabetes. Diabetes Care, 2009, 32(10): 1845-1850. |
12. | Koye DN, Magliano DJ, Reid CM, et al. Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis, 2018, 72(5): 653-661. |
13. | Retnakaran R, Cull CA, Thorne KI, et al. Risk factors for renal dysfunction in type 2 diabetes: U. K. prospective diabetes study 74. Diabetes, 2006, 55(6): 1832-1839. |
14. | Ninomiya T, Perkovic V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol, 2009, 20(8): 1813-1821. |
15. | Klimontov VV, Korbut AI. Normoalbuminuric chronic kidney disease in diabetes. Ter Arkh, 2018, 90(10): 94-98. |
16. | Penno G, Solini A, Bonora E, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens, 2011, 29(9): 1802-1809. |
17. | Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol, 2014, 51(6): 905-915. |
18. | Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes, 2003, 52(4): 1036-1040. |
19. | Ekinci EI, Jerums G, Skene A, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care, 2013, 36(11): 3620-3626. |
20. | Moriya T, Omura K, Matsubara M, et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese patients with type 2 diabetes. Diabetes Care, 2017, 40(10): 1373-1378. |
21. | Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev, 2017, 33(2). |
22. | Bacci MR, Chehter EZ, Azzalis LA, et al. Serum ngal and cystatin c comparison with urinary albumin-to-creatinine ratio and inflammatory biomarkers as early predictors of renal dysfunction in patients with type 2 diabetes. Kidney Int Rep, 2017, 2(2): 152-158. |
23. | Winter L, Wong LA, Jerums G, et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease. Front Endocrinol (Lausanne), 2018, 9: 225. |
24. | Konenkov VI, Klimontov VV, Myakina NE, et al. Increased serum concentrations of inflammatory cytokines in type 2 diabetic patients with chronic kidney disease. Ter Arkh, 2015, 87(6): 45-49. |
25. | Nojima J, Meguro S, Ohkawa N, et al. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(9): 746-754. |
26. | Carlsson AC, Ostgren CJ, Nystrom FH, et al. Association of soluble tumor necrosis factor receptors 1 and 2 with nephropathy, cardiovascular events, and total mortality in type 2 diabetes. Cardiovasc Diabetol, 2016, 15: 40. |
27. | Klisic A, Kavaric N, Ninic A. Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes. J Res Med Sci, 2018, 23: 44. |
28. | Lee CH, Hui EY, Woo YC, et al. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab, 2015, 100(4): 1368-1375. |
29. | Kim SS, Song SH, Kim IJ, et al. Decreased plasma α-Klotho predict progression of nephropathy with type 2 diabetic patients. J Diabetes Complications, 2016, 30(5): 887-892. |
30. | Kidney Disease: Improving Global Outcomes(KDIGO). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl, 2013, 3(1): 1-150. |
31. | Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol, 2009, 53(3): 298-304. |
32. | Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis, 2018, 71(6): 884-895. |
33. | Yakush Williams JK. Management strategies for patients with diabetic kidney disease and chronic kidney disease in diabetes. Nurs Clin North Am, 2017, 52(4): 575-587. |
34. | Al-Onazi AS, Al-Rasheed NM, Attia HA, et al. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways. J Pharm Pharmacol, 2016, 68(2): 219-232. |
35. | RamachandraRao SP, Zhu Y, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol, 2009, 20(8): 1765-1775. |
36. | Bhattacharjee N, Barma S, Konwar N, et al. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol, 2016, 791: 8-24. |
37. | de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med, 2013, 369(26): 2492-2503. |
38. | Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol, 2010, 21(3): 527-535. |
39. | Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med, 2013, 369(20): 1892-1903. |
40. | American Diabetes Association. 5. Lifestyle management: standards of medical care in diabetes -2019. Diabetes Care, 2019, 42(Suppl 1): S46-S60. |
41. | Guideline development group. Clinical practice guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR<45 mL/min). Nephrol Dial Transplant, 2015, 30(Suppl 2): ii1-142. |
42. | The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med, 1993, 329(14): 977-986. |
43. | The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes, 2015, 64(2): 631-642. |
44. | Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998, 352(9131): 854-865. |
45. | Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998, 352(9131): 837-853. |
46. | American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S61-S70. |
47. | The ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med, 2011, 364(9): 818-828. |
48. | Miller ME, Williamson JD, Gerstein HC, et al. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD Trial. Diabetes Care, 2014, 37(3): 634-643. |
49. | Stavropoulos K, Imprialos KP, Stavropoulos N, et al. Sodium-glucose cotransporter 2 inhibitors: nephroprotective impact on diabetic kidney disease. Cardiovasc Hematol Disord Drug Targets, 2018, 18(2): 120-126. |
50. | Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med, 2013, 159(4): 262-274. |
51. | Tang H, Li D, Zhang J, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab, 2017, 19(8): 1106-1115. |
52. | Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med, 2015, 373(22): 2117-2128. |
53. | Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med, 2016, 375(4): 323-334. |
54. | Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med, 2017, 377(7): 644-657. |
55. | Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med, 2019, 380(24): 2295-2306. |
56. | List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care, 2009, 32(4): 650-657. |
57. | Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int, 2014, 85(4): 962-971. |
58. | Heerspink HJ, Johnsson E, Gause-Nilsson I, et al. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab, 2016, 18(6): 590-597. |
59. | de Vos LC, Hettige TS, Cooper ME. New glucose-lowering agents for diabetic kidney disease. Adv Chronic Kidney Dis, 2018, 25(2): 149-157. |
60. | Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2016, 375(4): 311-322. |
61. | Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med, 2017, 377(9): 839-848. |
62. | Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med, 2016, 375(19): 1834-1844. |
63. | Pratley R, Amod A, Hoff ST, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet, 2019, 394(10192): 39-50. |
64. | Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med, 2019. |
65. | Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol, 2018, 6(8): 605-617. |
66. | Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet, 2019, pii: S0140-6736(19): 31149-3. |
67. | Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet, 2019, pii: S0140-6736(19): 31150-X. |
68. | Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia, 2015, 58(3): 429-442. |
69. | Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair, 2016, 9: 1. |
70. | Takagaki Y, Koya D, Kanasaki K. Dipeptidyl peptidase-4 inhibition and renoprotection: the role of antifibrotic effects. Curr Opin Nephrol Hypertens, 2017, 26(1): 56-66. |
71. | Blech S, Ludwig-Schwellinger E, Grafe-Mody EU, et al. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos, 2010, 38(4): 667-678. |
72. | Golightly LK, Drayna CC, McDermott MT. Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clin Pharmacokinet, 2012, 51(8): 501-514. |
73. | Graefe-Mody U, Friedrich C, Port A, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin(*). Diabetes Obes Metab, 2011, 13(10): 939-946. |
74. | Mosenzon O, Leibowitz G, Bhatt DL, et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care, 2017, 40(1): 69-76. |
75. | Cornel JH, Bakris GL, Stevens SR, et al. Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: outcomes from TECOS. Diabetes Care, 2016, 39(12): 2304-2310. |
76. | Tonneijck L, Smits MM, Muskiet MH, et al. Renal effects of dpp-4 inhibitor sitagliptin or glp-1 receptor agonist liraglutide in overweight patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled trial. Diabetes Care, 2016, 39(11): 2042-2050. |
77. | Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond), 2018, 132(4): 489-507. |
78. | Chao CT, Wang J, Wu HY, et al. Dipeptidyl peptidase 4 inhibitor use is associated with a lower risk of incident acute kidney injury in patients with diabetes. Oncotarget, 2017, 8(32): 53028-53040. |
79. | Laakso M, Rosenstock J, Groop PH, et al. Treatment with the dipeptidyl peptidase-4 inhibitor linagliptin or placebo followed by glimepiride in patients with type 2 diabetes with moderate to severe renal impairment: a 52-week, randomized, double-blind clinical trial. Diabetes Care, 2015, 38(2): e15-e17. |
80. | McGill JB, Sloan L, Newman J, et al. Long-term efficacy and safety of linagliptin in patients with type 2 diabetes and severe renal impairment: a 1-year, randomized, double-blind, placebo-controlled study. Diabetes Care, 2013, 36(2): 237-244. |
81. | von Eynatten M, Gong Y, Emser A, et al. Efficacy and safety of linagliptin in type 2 diabetes subjects at high risk for renal and cardiovascular disease: a pooled analysis of six phaseⅢclinical trials. Cardiovasc Diabetol, 2013, 12: 60. |
82. | Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care, 2013, 36(11): 3460-3468. |
83. | Cooper ME, Perkovic V, McGill JB, et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am J Kidney Dis, 2015, 66(3): 441-449. |
84. | Groop PH, Cooper ME, Perkovic V, et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab, 2017, 19(11): 1610-1619. |
85. | Ott C, Kistner I, Keller M, et al. Effects of linagliptin on renal endothelial function in patients with type 2 diabetes: a randomised clinical trial. Diabetologia, 2016, 59(12): 2579-2587. |
86. | Jax T, Stirban A, Terjung A, et al. A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes. Cardiovasc Diabetol, 2017, 16(1): 13. |
87. | Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA, 2019, 321(1): 69-79. |
88. | Van Biesen W, Van de Velde T, Slabbaert M, et al. Blood pressure management in patients with chronic kidney disease: an appraisal and summary of existing guidelines. Acta Clin Belg, 2013, 68(6): 394-398. |
89. | American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S103-S123. |
90. | Buckley LF, Dixon DL, Wohlford GFt, et al. Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP. Diabetes Care, 2017, 40(12): 1733-1738. |
91. | Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA, 2015, 313(6): 603-615. |
92. | 中国医师协会肾脏内科医师分会, 中国中西医结合学会肾脏疾病专业委员会. 中国肾性高血压管理指南2016(简版). 中华医学杂志, 2017, 97(20): 1547-1555. |
93. | Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 2001, 345(12): 861-869. |
94. | Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med, 2001, 345(12): 870-878. |
95. | Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med, 1993, 329(20): 1456-1462. |
96. | Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med, 2001, 345(12): 851-860. |
97. | Lacourcière Y, Bélanger A, Godin C, et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney Int, 2000, 58(2): 762-769. |
98. | Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med, 2004, 351(19): 1952-1961. |
99. | Ozturk S, Sar F, Bengi-Bozkurt O, et al. Study of ACEI versus ARB in managing hypertensive overt diabetic nephropathy: long-term analysis. Kidney Blood Press Res, 2009, 32(4): 268-275. |
100. | Haller H, Ito S, Izzo JL Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med, 2011, 364(10): 907-917. |
101. | ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet, 2007, 370(9590): 829-840. |
102. | Bangalore S, Fakheri R, Toklu B, et al. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ, 2016, 352: i438. |
103. | American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl 1): S105-S118. |
104. | ONTARGET Investigators, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med, 2008, 358(15): 1547-1559. |
105. | Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med, 2012, 367(23): 2204-2213. |
106. | Elam MB, Ginsberg HN, Lovato LC, et al. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol, 2017, 2(4): 370-380. |
107. | Chen SC, Tseng CH. Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev Diabet Stud, 2013, 10(2-3): 88-100. |
108. | Athyros VG, Tziomalos K, Karagiannis A, et al. Statins and cardiovascular events in patients with end-stage renal disease on hemodialysis. The AURORA results suggest the need for earlier intervention. Curr Vasc Pharmacol, 2009, 7(3): 264-266. |
109. | Athyros VG, Karagiannis A, Katsiki N, et al. Statins in patients with renal dysfunction. Am J Cardiol, 2012, 109(10): 1537. |
110. | Athyros VG, Karagiannis A, Liberopoulos EN, et al. Statin treatment may be beneficial to both the kidneys and the heart. Perit Dial Int, 2007, 27(2): 215-216. |
111. | Athyros VG, Mikhailidis DP, Papageorgiou AA, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol, 2004, 57(7): 728-734. |
112. | Afzali B, Goldsmith DJ. Beneficial effects of statins on the kidney. J Clin Pathol, 2004, 57(7): 673-674. |
113. | Athyros VG, Papageorgiou AA, Elisaf M, et al. Statins and renal function in patients with diabetes mellitus. Curr Med Res Opin, 2003, 19(7): 615-617. |
114. | Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med, 2015, 372(25): 2387-2397. |
115. | Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017, 376(18): 1713-1722. |
116. | Standl E, Schnell O, McGuire DK, et al. Integration of recent evidence into management of patients with atherosclerotic cardiovascular disease and type 2 diabetes. Lancet Diabetes Endocrinol, 2017, 5(5): 391-402. |
117. | González Sanchidrián S, Labrador Gómez PJ, Aguilar Aguilar JC, et al. Evolocumab for the treatment of heterozygous familial hypercholesterolemia in end-stage chronic kidney disease and dialysis. Nefrologia, 2019, 39(2): 218-220. |
118. | Holdaas H, Holme I, Schmieder RE, et al. Rosuvastatin in diabetic hemodialysis patients. J Am Soc Nephrol, 2011, 22(7): 1335-1341. |
119. | Ferro CJ, Mark PB, Kanbay M, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol, 2018, 14(12): 727-749. |
- 1. Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 2018, 138: 271-281.
- 2. Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017, 317(24): 2515-2523.
- 3. Koye DN, Magliano DJ, Nelson RG, et al. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis, 2018, 25(2): 121-132.
- 4. Huang YM, Xu D, Long J, et al. Spectrum of chronic kidney disease in China: a national study based on hospitalized patients from 2010 to 2015. Nephrology (Carlton), 2019, 24(7): 725-736.
- 5. Liu ZH. Nephrology in China. Nat Rev Nephrol, 2013, 9(9): 523-528.
- 6. Gheith O, Farouk N, Nampoory N, et al. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol, 2016, 5(1): 49-56.
- 7. A/L B Vasanth Rao VR, Tan SH, Candasamy M, et al. Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr, 2019, 13(1): 754-762.
- 8. American Diabetes Association. 11. Microvascular complications and foot care: Standards of Medical Care in Diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S124-S138.
- 9. Afkarian M, Zelnick LR, Hall YN, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA, 2016, 316(6): 602-610.
- 10. de Boer IH, Rue TC, Hall YN, et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA, 2011, 305(24): 2532-2539.
- 11. Pavkov ME, Mason CC, Bennett PH, et al. Change in the distribution of albuminuria according to estimated glomerular filtration rate in Pima Indians with type 2 diabetes. Diabetes Care, 2009, 32(10): 1845-1850.
- 12. Koye DN, Magliano DJ, Reid CM, et al. Risk of progression of nonalbuminuric CKD to end-stage kidney disease in people with diabetes: the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis, 2018, 72(5): 653-661.
- 13. Retnakaran R, Cull CA, Thorne KI, et al. Risk factors for renal dysfunction in type 2 diabetes: U. K. prospective diabetes study 74. Diabetes, 2006, 55(6): 1832-1839.
- 14. Ninomiya T, Perkovic V, de Galan BE, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol, 2009, 20(8): 1813-1821.
- 15. Klimontov VV, Korbut AI. Normoalbuminuric chronic kidney disease in diabetes. Ter Arkh, 2018, 90(10): 94-98.
- 16. Penno G, Solini A, Bonora E, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens, 2011, 29(9): 1802-1809.
- 17. Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol, 2014, 51(6): 905-915.
- 18. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes, 2003, 52(4): 1036-1040.
- 19. Ekinci EI, Jerums G, Skene A, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care, 2013, 36(11): 3620-3626.
- 20. Moriya T, Omura K, Matsubara M, et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese patients with type 2 diabetes. Diabetes Care, 2017, 40(10): 1373-1378.
- 21. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev, 2017, 33(2).
- 22. Bacci MR, Chehter EZ, Azzalis LA, et al. Serum ngal and cystatin c comparison with urinary albumin-to-creatinine ratio and inflammatory biomarkers as early predictors of renal dysfunction in patients with type 2 diabetes. Kidney Int Rep, 2017, 2(2): 152-158.
- 23. Winter L, Wong LA, Jerums G, et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease. Front Endocrinol (Lausanne), 2018, 9: 225.
- 24. Konenkov VI, Klimontov VV, Myakina NE, et al. Increased serum concentrations of inflammatory cytokines in type 2 diabetic patients with chronic kidney disease. Ter Arkh, 2015, 87(6): 45-49.
- 25. Nojima J, Meguro S, Ohkawa N, et al. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(9): 746-754.
- 26. Carlsson AC, Ostgren CJ, Nystrom FH, et al. Association of soluble tumor necrosis factor receptors 1 and 2 with nephropathy, cardiovascular events, and total mortality in type 2 diabetes. Cardiovasc Diabetol, 2016, 15: 40.
- 27. Klisic A, Kavaric N, Ninic A. Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes. J Res Med Sci, 2018, 23: 44.
- 28. Lee CH, Hui EY, Woo YC, et al. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab, 2015, 100(4): 1368-1375.
- 29. Kim SS, Song SH, Kim IJ, et al. Decreased plasma α-Klotho predict progression of nephropathy with type 2 diabetic patients. J Diabetes Complications, 2016, 30(5): 887-892.
- 30. Kidney Disease: Improving Global Outcomes(KDIGO). KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl, 2013, 3(1): 1-150.
- 31. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a Scientific Statement of the American College of Cardiology Foundation and the American Heart Association. J Am Coll Cardiol, 2009, 53(3): 298-304.
- 32. Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis, 2018, 71(6): 884-895.
- 33. Yakush Williams JK. Management strategies for patients with diabetic kidney disease and chronic kidney disease in diabetes. Nurs Clin North Am, 2017, 52(4): 575-587.
- 34. Al-Onazi AS, Al-Rasheed NM, Attia HA, et al. Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways. J Pharm Pharmacol, 2016, 68(2): 219-232.
- 35. RamachandraRao SP, Zhu Y, Ravasi T, et al. Pirfenidone is renoprotective in diabetic kidney disease. J Am Soc Nephrol, 2009, 20(8): 1765-1775.
- 36. Bhattacharjee N, Barma S, Konwar N, et al. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol, 2016, 791: 8-24.
- 37. de Zeeuw D, Akizawa T, Audhya P, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med, 2013, 369(26): 2492-2503.
- 38. Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol, 2010, 21(3): 527-535.
- 39. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med, 2013, 369(20): 1892-1903.
- 40. American Diabetes Association. 5. Lifestyle management: standards of medical care in diabetes -2019. Diabetes Care, 2019, 42(Suppl 1): S46-S60.
- 41. Guideline development group. Clinical practice guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR<45 mL/min). Nephrol Dial Transplant, 2015, 30(Suppl 2): ii1-142.
- 42. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med, 1993, 329(14): 977-986.
- 43. The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes, 2015, 64(2): 631-642.
- 44. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998, 352(9131): 854-865.
- 45. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998, 352(9131): 837-853.
- 46. American Diabetes Association. 6. Glycemic targets: standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S61-S70.
- 47. The ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med, 2011, 364(9): 818-828.
- 48. Miller ME, Williamson JD, Gerstein HC, et al. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD Trial. Diabetes Care, 2014, 37(3): 634-643.
- 49. Stavropoulos K, Imprialos KP, Stavropoulos N, et al. Sodium-glucose cotransporter 2 inhibitors: nephroprotective impact on diabetic kidney disease. Cardiovasc Hematol Disord Drug Targets, 2018, 18(2): 120-126.
- 50. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med, 2013, 159(4): 262-274.
- 51. Tang H, Li D, Zhang J, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab, 2017, 19(8): 1106-1115.
- 52. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med, 2015, 373(22): 2117-2128.
- 53. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med, 2016, 375(4): 323-334.
- 54. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med, 2017, 377(7): 644-657.
- 55. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med, 2019, 380(24): 2295-2306.
- 56. List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care, 2009, 32(4): 650-657.
- 57. Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int, 2014, 85(4): 962-971.
- 58. Heerspink HJ, Johnsson E, Gause-Nilsson I, et al. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab, 2016, 18(6): 590-597.
- 59. de Vos LC, Hettige TS, Cooper ME. New glucose-lowering agents for diabetic kidney disease. Adv Chronic Kidney Dis, 2018, 25(2): 149-157.
- 60. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2016, 375(4): 311-322.
- 61. Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med, 2017, 377(9): 839-848.
- 62. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med, 2016, 375(19): 1834-1844.
- 63. Pratley R, Amod A, Hoff ST, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet, 2019, 394(10192): 39-50.
- 64. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med, 2019.
- 65. Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol, 2018, 6(8): 605-617.
- 66. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet, 2019, pii: S0140-6736(19): 31149-3.
- 67. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet, 2019, pii: S0140-6736(19): 31150-X.
- 68. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia, 2015, 58(3): 429-442.
- 69. Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair, 2016, 9: 1.
- 70. Takagaki Y, Koya D, Kanasaki K. Dipeptidyl peptidase-4 inhibition and renoprotection: the role of antifibrotic effects. Curr Opin Nephrol Hypertens, 2017, 26(1): 56-66.
- 71. Blech S, Ludwig-Schwellinger E, Grafe-Mody EU, et al. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos, 2010, 38(4): 667-678.
- 72. Golightly LK, Drayna CC, McDermott MT. Comparative clinical pharmacokinetics of dipeptidyl peptidase-4 inhibitors. Clin Pharmacokinet, 2012, 51(8): 501-514.
- 73. Graefe-Mody U, Friedrich C, Port A, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin(*). Diabetes Obes Metab, 2011, 13(10): 939-946.
- 74. Mosenzon O, Leibowitz G, Bhatt DL, et al. Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care, 2017, 40(1): 69-76.
- 75. Cornel JH, Bakris GL, Stevens SR, et al. Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: outcomes from TECOS. Diabetes Care, 2016, 39(12): 2304-2310.
- 76. Tonneijck L, Smits MM, Muskiet MH, et al. Renal effects of dpp-4 inhibitor sitagliptin or glp-1 receptor agonist liraglutide in overweight patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled trial. Diabetes Care, 2016, 39(11): 2042-2050.
- 77. Kanasaki K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin Sci (Lond), 2018, 132(4): 489-507.
- 78. Chao CT, Wang J, Wu HY, et al. Dipeptidyl peptidase 4 inhibitor use is associated with a lower risk of incident acute kidney injury in patients with diabetes. Oncotarget, 2017, 8(32): 53028-53040.
- 79. Laakso M, Rosenstock J, Groop PH, et al. Treatment with the dipeptidyl peptidase-4 inhibitor linagliptin or placebo followed by glimepiride in patients with type 2 diabetes with moderate to severe renal impairment: a 52-week, randomized, double-blind clinical trial. Diabetes Care, 2015, 38(2): e15-e17.
- 80. McGill JB, Sloan L, Newman J, et al. Long-term efficacy and safety of linagliptin in patients with type 2 diabetes and severe renal impairment: a 1-year, randomized, double-blind, placebo-controlled study. Diabetes Care, 2013, 36(2): 237-244.
- 81. von Eynatten M, Gong Y, Emser A, et al. Efficacy and safety of linagliptin in type 2 diabetes subjects at high risk for renal and cardiovascular disease: a pooled analysis of six phaseⅢclinical trials. Cardiovasc Diabetol, 2013, 12: 60.
- 82. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care, 2013, 36(11): 3460-3468.
- 83. Cooper ME, Perkovic V, McGill JB, et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am J Kidney Dis, 2015, 66(3): 441-449.
- 84. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab, 2017, 19(11): 1610-1619.
- 85. Ott C, Kistner I, Keller M, et al. Effects of linagliptin on renal endothelial function in patients with type 2 diabetes: a randomised clinical trial. Diabetologia, 2016, 59(12): 2579-2587.
- 86. Jax T, Stirban A, Terjung A, et al. A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes. Cardiovasc Diabetol, 2017, 16(1): 13.
- 87. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA, 2019, 321(1): 69-79.
- 88. Van Biesen W, Van de Velde T, Slabbaert M, et al. Blood pressure management in patients with chronic kidney disease: an appraisal and summary of existing guidelines. Acta Clin Belg, 2013, 68(6): 394-398.
- 89. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2019. Diabetes Care, 2019, 42(Suppl 1): S103-S123.
- 90. Buckley LF, Dixon DL, Wohlford GFt, et al. Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP. Diabetes Care, 2017, 40(12): 1733-1738.
- 91. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA, 2015, 313(6): 603-615.
- 92. 中国医师协会肾脏内科医师分会, 中国中西医结合学会肾脏疾病专业委员会. 中国肾性高血压管理指南2016(简版). 中华医学杂志, 2017, 97(20): 1547-1555.
- 93. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 2001, 345(12): 861-869.
- 94. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med, 2001, 345(12): 870-878.
- 95. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med, 1993, 329(20): 1456-1462.
- 96. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med, 2001, 345(12): 851-860.
- 97. Lacourcière Y, Bélanger A, Godin C, et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney Int, 2000, 58(2): 762-769.
- 98. Barnett AH, Bain SC, Bouter P, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med, 2004, 351(19): 1952-1961.
- 99. Ozturk S, Sar F, Bengi-Bozkurt O, et al. Study of ACEI versus ARB in managing hypertensive overt diabetic nephropathy: long-term analysis. Kidney Blood Press Res, 2009, 32(4): 268-275.
- 100. Haller H, Ito S, Izzo JL Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med, 2011, 364(10): 907-917.
- 101. ADVANCE Collaborative Group. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet, 2007, 370(9590): 829-840.
- 102. Bangalore S, Fakheri R, Toklu B, et al. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ, 2016, 352: i438.
- 103. American Diabetes Association. 10. Microvascular complications and foot care: standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl 1): S105-S118.
- 104. ONTARGET Investigators, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med, 2008, 358(15): 1547-1559.
- 105. Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med, 2012, 367(23): 2204-2213.
- 106. Elam MB, Ginsberg HN, Lovato LC, et al. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol, 2017, 2(4): 370-380.
- 107. Chen SC, Tseng CH. Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev Diabet Stud, 2013, 10(2-3): 88-100.
- 108. Athyros VG, Tziomalos K, Karagiannis A, et al. Statins and cardiovascular events in patients with end-stage renal disease on hemodialysis. The AURORA results suggest the need for earlier intervention. Curr Vasc Pharmacol, 2009, 7(3): 264-266.
- 109. Athyros VG, Karagiannis A, Katsiki N, et al. Statins in patients with renal dysfunction. Am J Cardiol, 2012, 109(10): 1537.
- 110. Athyros VG, Karagiannis A, Liberopoulos EN, et al. Statin treatment may be beneficial to both the kidneys and the heart. Perit Dial Int, 2007, 27(2): 215-216.
- 111. Athyros VG, Mikhailidis DP, Papageorgiou AA, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol, 2004, 57(7): 728-734.
- 112. Afzali B, Goldsmith DJ. Beneficial effects of statins on the kidney. J Clin Pathol, 2004, 57(7): 673-674.
- 113. Athyros VG, Papageorgiou AA, Elisaf M, et al. Statins and renal function in patients with diabetes mellitus. Curr Med Res Opin, 2003, 19(7): 615-617.
- 114. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med, 2015, 372(25): 2387-2397.
- 115. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017, 376(18): 1713-1722.
- 116. Standl E, Schnell O, McGuire DK, et al. Integration of recent evidence into management of patients with atherosclerotic cardiovascular disease and type 2 diabetes. Lancet Diabetes Endocrinol, 2017, 5(5): 391-402.
- 117. González Sanchidrián S, Labrador Gómez PJ, Aguilar Aguilar JC, et al. Evolocumab for the treatment of heterozygous familial hypercholesterolemia in end-stage chronic kidney disease and dialysis. Nefrologia, 2019, 39(2): 218-220.
- 118. Holdaas H, Holme I, Schmieder RE, et al. Rosuvastatin in diabetic hemodialysis patients. J Am Soc Nephrol, 2011, 22(7): 1335-1341.
- 119. Ferro CJ, Mark PB, Kanbay M, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol, 2018, 14(12): 727-749.