1. |
Wang L, Hou W, Zhang Q, et al. Hierarchical self-Assembly of injectable alginate supramolecular nanofibril hydrogels for hemostasis in vivo. Adv Fiber Mater, 2024, 6(2): 489-500.
|
2. |
Li H, Zhu X, Wang M, et al. Drug sustained release from degradable drug-loaded in-situ hydrogels in the posterior eye: A mechanistic model and analytical method. J Biomech, 2022, 136: 111052.
|
3. |
Sun L, Xu Y, Han Y, et al. Collagen-based hydrogels for cartilage regeneration. Orthop Surg, 2023, 15(12): 3026-3045.
|
4. |
Islam H B M Z, Krishna S B N, Imran A B. Enhancing the mechanical properties of hydrogels with vinyl-functionalized nanocrystalline cellulose as a green crosslinker. Nanotechnology, 2023, 34(50). DOI: 10.1088/1361-6528/acf93b.
|
5. |
Okoro P D, Frayssinet A, De Oliveira S, et al. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into nucleus pulposus like cells. Biomater Sci, 2023, 11(24): 7768-7783.
|
6. |
Sardroud H A, Chen X B, Eames B F. Reinforcement of hydrogels with a 3D-printed polycaprolactone (PCL) structure enhances cell numbers and cartilage ECM production under compression. J Funct, 2023, 14(6): 313.
|
7. |
El Soury M, García-García O D, Tarulli I, et al. Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect. Neural Regen Res, 2023, 18(6): 1378-1385.
|
8. |
Ghazagh P, Frounchi M. Hydroxyapatite/alginate/polyvinyl alcohol/agar composite double-network hydrogels as injectable drug delivery microspheres. Chem Pap, 2024, 78(5): 2967-2976.
|
9. |
Houben S, Pitet L M. Ionic crosslinking strategies for poly(acrylamide)/alginate hybrid hydrogels. React Funct Polym, 2023, 191: 105676.
|
10. |
Tomic S L J, Radic M M B, Vukovic J S, et al. Alginate-based hydrogels and scaffolds for biomedical applications. Mar Drugs, 2023, 21(3): 177.
|
11. |
Zdiri K, Cayla A, Elamri A, et al. Alginate-based bio-composites and their potential applications. JFB, 2022, 13(3): 117.
|
12. |
Nakada M, Ishida H, Uchiyama H, et al. Disaggregation and fibrillation during sol-gel transition of alginate hydrogels. Int J Biol Macromol, 2024, 269(Pt 2): 131890.
|
13. |
Gorshkova M Y, Vanchugova L V, Volkova I F, et al. Novel mucoadhesive carriers based on alginate-acrylamide hydrogels for drug delivery. Mendeleev Commun, 2022, 32(2): 189-191.
|
14. |
Ahmad F, Mushtaq B, Ahmad S, et al. A novel composite of hemp fiber and alginate hydrogel for wound dressings. J Polym Environ, 2023, 31(6): 2294-2305.
|
15. |
Kavand A, Noverraz F, Gerber-Lemaire S. Recent advances in alginate-based hydrogels for cell transplantation applications. Pharmaceutics, 2024, 16(4): 469.
|
16. |
Krishna D V, Sankar M R. Extrusion based bioprinting of alginate based multicomponent hydrogels for tissue regeneration applications: State of the art. Mater Today Commun, 2023, 35: 105696.
|
17. |
Hu X, Zhang Z, Wu H, et al. Progress in the application of 3D-printed sodium alginate-based hydrogel scaffolds in bone tissue repair. Mat Sci Eng C-Mater, 2023, 152: 213501.
|
18. |
Ledo A M, Vining K H, Alonso M J, et al. Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater, 2020, 110: 153-163.
|
19. |
Wang M, Yang Y, Han L, et al. Effect of three-dimensional ECM stiffness on cancer cell migration through regulating cell volume homeostasis. Biochem Bioph Res Co, 2020, 528(3): 459-465.
|
20. |
Zheng H, Tian W, Yan H, et al. Rotary culture promotes the proliferation of MCF-7 cells encapsulated in three-dimensional collagen–alginate hydrogels via activation of the ERK1/2-MAPK pathway. Biomed Mater, 2012, 7(1): 015003.
|
21. |
Mei E, Li S, Song J, et al. Self-assembling collagen/alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloid Surface A, 2019, 577: 570-575.
|
22. |
Sakai S, Yamamoto S, Hirami R, et al. Enzymatically gellable chitosan inks with enhanced printability by chitosan nanofibers for 3D printing of wound dressings. Eur Polym, 2024, 210: 112960.
|
23. |
Kankariya Y, Chatterjee B. Biomedical application of chitosan and chitosan derivatives: a comprehensive review. Curr Pharm Design, 2023, 29(17): 1311-1325.
|
24. |
Tang W, Wang J, Hou H, et al. Review: Application of chitosan and its derivatives in medical materials. Int J Biol Macromol, 2023, 240: 124398.
|
25. |
Yang J Y, Chen Y, Zhao L, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers. Polym Rev, 2023, 63(3): 574-612.
|
26. |
Guillén-Carvajal K, Valdez-Salas B, Beltrán-Partida E, et al. Chitosan, gelatin, and collagen hydrogels for bone regeneration. Polymers, 2023, 15(13): 2762.
|
27. |
Sánchez-Cid P, Jiménez-Rosado M, Rubio-Valle J F, et al. Biocompatible and thermoresistant hydrogels based on collagen and chitosan. Polymers, 2022, 14(2): 272.
|
28. |
Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, et al. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym, 2016, 153: 492-500.
|
29. |
Sparks H D, Sigaeva T, Tarraf S, et al. Biomechanics of wound healing in an equine limb model: effect of location and treatment with a peptide-modified collagen–chitosan hydrogel. ACS Biomater Sci, 2020, 7(1): 265-278.
|
30. |
Salva E, Akdag A E, Alan S, et al. Evaluation of the effect of honey-containing chitosan/hyaluronic acid hydrogels on wound healing. Gels, 2023, 9(11): 856.
|
31. |
Zhong S, Lu C, Liu H-Y, et al. Electrical and immune stimulation-based hydrogels synergistically realize scarless wound healing via amplifying endogenous electrophysiological function and promoting macrophage phenotype-switching. Chem Eng J, 2024, 491: 152048.
|
32. |
O’Shea D G, Hodgkinson T, Curtin C M, et al. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects. Biofabrication, 2024, 16(1): 015007.
|
33. |
Shopperly L K, Spinnen J, Krüger J P, et al. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. J Biomed Mater Res B Appl Biomater, 2022, 110(10): 2310-2322.
|
34. |
Yamamoto T, Randriantsilefisoa R, Sprecher C M, et al. Fabrication of collagen-hyaluronic acid cryogels by directional freezing mimicking cartilage arcade-like structure. Biomolecules, 2022, 12(12): 1809.
|
35. |
Yuan T, He L, Yang J, et al. Conjugated icariin promotes tissue-engineered cartilage formation in hyaluronic acid/collagen hydrogel. Process Biochem, 2015, 50(12): 2242-2250.
|
36. |
Rodler A, Samanta A, Goh W-J, et al. Engineering and characterization of a hydrogel mimicking subcutaneous interstitial space. Eur Polym, 2024, 205: 112739.
|
37. |
Jia Y, Zhang X, Yang W, et al. A pH-responsive hyaluronic acid hydrogel for regulating the inflammation and remodeling of the ECM in diabetic wounds. J Mater Chem, 2022, 10(15): 2875-2888.
|
38. |
Li Y, Dong X, Yao L, et al. Preparation and characterization of nanocomposite hydrogels based on self-assembling collagen and cellulose nanocrystals. Polymers, 2023, 15(5): 1308.
|
39. |
Tudoroiu E-E, Kaya M G A, Titorencu I, et al. Design and evaluation of new wound dressings based on collagen-cellulose derivatives. Mater Design, 2023, 236(3): 112469.
|
40. |
张霞, 周浩, 杨宇红, 等. 氧化纤维素增强胶原水凝胶. 高等学校化学学报 2015, 36(10): 2040-2046.
|
41. |
Lohrasbi S, Mirzaei E, Karimizade A, et al. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties. Cellulose, 2019, 27(2): 927-940.
|
42. |
Kutová A, Svorcík V. Bacterial nanocellulose and its medical usage. Chem Listy, 2022, 116(5): 308-315.
|
43. |
Moraes P R F D S, Saska S, Barud H, et al. Bacterial cellulose/collagen hydrogel for wound healing. Mater Res, 2016, 19(1): 106-116.
|