1. |
FeldmanHall O, Montez D F, Phelps E A, et al. Hippocampus guides adaptive learning during dynamic social interactions. Journal of Neuroscience, 2021, 41(6): 1340-1348.
|
2. |
Rushworth M F, Noonan M P, Boorman E D, et al. Frontal cortex and reward-guided learning and decision-making. Neuron, 2011, 70(6): 1054-1069.
|
3. |
Friston K J. Functional and effective connectivity: a review. Brain Connectivity, 2011, 1(1): 13-36.
|
4. |
Benchenane K, Peyrache A, Khamassi M, et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron, 2010, 66(6): 921-936.
|
5. |
王雪玲, 王伊萌, 杨佳佳, 等. 记忆水平依赖的海马-前额叶神经节律交互. 生物化学与生物物理进展, 2021, 48(8): 907-921.
|
6. |
Vertes R P. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 2006, 142(1): 1-20.
|
7. |
Liu T, Bai W, Xia M, et al. Directional hippocampal-prefrontal interactions during working memory. Behavioural Brain Research, 2018, 338: 1-8.
|
8. |
Morici J F, Weisstaub N V, Zold C L. Hippocampal-medial prefrontal cortex network dynamics predict performance during retrieval in a context-guided object memory task. Proc Natl Acad Sci U S A, 2022, 119(20): e2203024119.
|
9. |
Alemany-González M, Gener T, Nebot P, et al. Prefrontal–hippocampal functional connectivity encodes recognition memory and is impaired in intellectual disability. Proc Natl Acad Sci U S A, 2020, 117(21): 11788-11798.
|
10. |
Avigan P D, Cammack K, Shapiro M L. Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex. Hippocampus, 2020, 30(7): 733-744.
|
11. |
Friston K J, Harrison L, Penny W. Dynamic causal modelling. Neuroimage, 2003, 19(4): 1273-1302.
|
12. |
Pinotsis D A, Geerts J P, Pinto L, et al. Linking canonical microcircuits and neuronal activity: dynamic causal modelling of laminar recordings. Neuroimage, 2017, 146: 355-366.
|
13. |
Cooray G K, Sengupta B, Douglas P, et al. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling. Neuroimage, 2015, 118: 508-519.
|
14. |
徐静, 李德民, 聂彬彬, 等. 运用动态因果模型探究精神分裂症异常有效连接. 中国临床心理学杂志, 2014, 22(6): 981-984.
|
15. |
Symmonds M, Moran C H, Leite M I, et al. Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis. Brain, 2018, 141(6): 1691-1702.
|
16. |
Moran R J, Jones M W, Blockeel A J, et al. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Neuropsychopharmacology, 2015, 40(2): 268-277.
|
17. |
Friston K, Moran R J, Nagai Y, et al. World model learning and inference. Neural Networks, 2021, 144: 573-590.
|
18. |
Friston K J, Preller K H, Mathys C, et al. Dynamic causal modelling revisited. Neuroimage, 2019, 199: 730-744.
|
19. |
Kahan J, Foltynie T. Understanding DCM: ten simple rules for the clinician. Neuroimage, 2013, 83: 542-549.
|
20. |
Zarghami T S, Friston K J. Dynamic effective connectivity. Neuroimage, 2020, 207: 116453.
|
21. |
Li S, Bai W, Liu T, et al. Increases of theta-low gamma coupling in rat medial prefrontal cortex during working memory task. Brain Research Bulletin, 2012, 89(3-4): 115-123.
|
22. |
张天恒, 郭苗苗, 徐桂芝, 等. 间歇性θ节律经颅磁刺激改善大鼠工作记忆的海马与前额叶跨脑区神经网络效应研究. 生物化学与生物物理进展, 2022, 49(8): 1573-1585.
|
23. |
李双燕, 岳宣雅, 王龙龙, 等. 基于神经元集群模型的动态因果模型算法综述. 中国生物医学工程学报, 2023, 42(6): 740-749.
|
24. |
张挺, 陆军, 郑旭媛. 基于动态因果模型的视觉工作记忆任务脑效应网络研究. 航天医学与医学工程, 2017, 30(2): 123-127.
|
25. |
岳宣雅.基于动态因果模型的睡眠剥夺对大鼠工作记忆影响的研究. 天津: 河北工业大学, 2022.
|
26. |
Fastenrath M, Friston K J, Kiebel S J. Dynamical causal modelling for M/EEG: spatial and temporal symmetry constraints. Neuroimage, 2009, 44(1): 154-163.
|
27. |
David O, Harrison L, Friston K J. Modelling event-related responses in the brain. Neuroimage, 2005, 25(3): 756-770.
|
28. |
Marreiros A C, Kiebel S J, Daunizeau J, et al. Population dynamics under the Laplace assumption. Neuroimage, 2009, 44(3): 701-714.
|
29. |
Deco G, Tononi G, Boly M, et al. Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience, 2015, 16(7): 430-439.
|
30. |
Eichenbaum H. Prefrontal–hippocampal interactions in episodic memory. Nature Reviews Neuroscience, 2017, 18(9): 547-558.
|
31. |
Stout J J, Hallock H L, George A E, et al. The ventral midline thalamus coordinates prefrontal-hippocampal neural synchrony during vicarious trial and error. Scientific Reports, 2022, 12(1): 10940.
|
32. |
Dickson C R, Holmes G L, Barry J M. Dynamic θ frequency coordination within and between the prefrontal cortex-hippocampus circuit during learning of a spatial avoidance task. eNeuro, 2022, 9(2): 0414-21.
|
33. |
Lisman J, Cooper K, Sehgal M, et al. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nature Neuroscience, 2018, 21(3): 309-314.
|
34. |
Park A J, Harris A Z, Martyniuk K M, et al. Reset of hippocampal-prefrontal circuitry facilitates learning. Nature. 2021, 591(7851): 615-619.
|
35. |
Rajasethupathy P, Sankaran S, Marshel J H, et al. Projections from neocortex mediate top-down control of memory retrieval. Nature, 2015, 526(7575): 653-659.
|
36. |
Pereira I, Frässle S, Heinzle J, et al. Conductance-based dynamic causal modeling: a mathematical review of its application to cross-power spectral densities. Neuroimage. 2021, 245: 118662.
|