• 1. CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China;
  • 2. Shenzhen Intelligent Lower Limb Rehabilitation Engineering Research Center, Shenzhen, Guangdong 518055, P. R. China;
  • 3. School of Mechanical Engineering, Chang’an University, Xi’an 710064, P. R. China;
  • 4. Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China;
LI Guanglin, Email: gl.li@siat.ac.cn
Export PDF Favorites Scan Get Citation

Traditional gait analysis systems are typically complex to operate, lack portability, and involve high equipment costs. This study aims to establish a musculoskeletal dynamics calculation process driven by Azure Kinect. Building upon the full-body model of the Anybody musculoskeletal simulation software and incorporating a foot-ground contact model, the study utilized Azure Kinect-driven skeletal data from depth videos of 10 participants. The in-depth videos were prepossessed to extract keypoint of the participants, which were then adopted as inputs for the musculoskeletal model to compute lower limb joint angles, joint contact forces, and ground reaction forces. To validate the Azure Kinect computational model, the calculated results were compared with kinematic and kinetic data obtained using the traditional Vicon system. The forces in the lower limb joints and the ground reaction forces were normalized by dividing them by the body weight. The lower limb joint angle curves showed a strong correlation with Vicon results (mean ρ values: 0.78 ~ 0.92) but with root mean square errors as high as 5.66°. For lower limb joint force prediction, the model exhibited root mean square errors ranging from 0.44 to 0.68, while ground reaction force root mean square errors ranged from 0.01 to 0.09. The established musculoskeletal dynamics model based on Azure Kinect shows good prediction capabilities for lower limb joint forces and vertical ground reaction forces, but some errors remain in predicting lower limb joint angles.

Citation: PENG Yinghu, WANG Lin, CHEN Zhenxian, DANG Xiaodong, CHEN Fei, LI Guanglin. Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture. Journal of Biomedical Engineering, 2024, 41(4): 751-757, 765. doi: 10.7507/1001-5515.202311040 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Mass transfer of bilirubin and bovine serum albumin in hollow fiber membrane module of artificial liver
  • Next Article

    Biomechanical study of three-dimensional printed filler block design in open wedge high tibial osteotomy