- Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Chemistry and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China;
Natural collagen peptides are collagen hydrolysates. Because of their unique physicochemical properties and excellent biological activities, collagen peptides have been a research hotspot of cosmetic raw materials development and skincare efficacy improvement. Combined with the needs of the skincare efficacy and the development trends of cosmetics, the extraction methods and their structural characteristics of natural collagen peptides were summarized in detail. The applications and its research progress in skincare efficacy of collagen peptides, such as moisturizing and anti-wrinkle, trophism and anti-aging, filling and skin regeneration were expressed with emphasis. Finally, the development and practical applications in cosmetics of natural collagen peptides were adequately prospected.
Citation: WU Yaqi, JU Haiyan, LYU Yonggang. Research progress of natural collagen peptides and its skincare efficacy. Journal of Biomedical Engineering, 2022, 39(6): 1254-1262. doi: 10.7507/1001-5515.202207009 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. | Sifre V, Soler C, Redondo J I. Macroscopic and histological improvements in joint cartilage, subchondral bovne and synovial fluid membrane with glycosaminoglycans and native type II collagen in a rabbit model of osteoarthritis. Osteoarthr Cartilage, 2020, 28(1): 206. |
2. | Mekkat A, Poppleton E, An B, et al. Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage. J Struct Biol, 2018, 203(3): 247-254. |
3. | Liu Qingsheng, Singh A, Liu Lingyun. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules, 2013, 14(1): 226-231. |
4. | Hadidi M, Zydney A L. Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. J Membrane Sci, 2014, 452: 97-103. |
5. | Li P H, Lu W C, Chan Y J, et al. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture, 2020, 515: 734590. |
6. | Sivaraman K, Shanthi C. Role of fish collagen hydrolysate in attenuating inflammation-an in vitro study. J Food Biochem, 2021, 45(1): 1-13. |
7. | Zhang Jixian, Wen Chaoting, Zhang Haihui, et al. Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends Food Sci Tech, 2019, 11(18): 183-195. |
8. | 郑巧东, 贠军贤, 林东强, 等. 胶原蛋白酸解为胶原多肽的动力学研究. 中国皮革, 2005, 34(11): 21-27. |
9. | 曹健, 陈秀金, 曾实, 等. 碱法水解脱铬革屑制备胶原蛋白水解物的研究. 中国皮革, 2002, 32(21): 12-15. |
10. | Tavano L O. Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B-enzym, 2013, 90: 1-11. |
11. | Hong H, Roy B C, Chalamaiah M, et al. Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem, 2018, 258(30): 174. |
12. | 陈贝, 张鸽, 乔琨, 等. 双斑东方鲀鱼皮胶原多肽的制备及其在化妆品中的功效与刺激性评价. 天然产物研究与开发, 2020, 32: 1190-1199. |
13. | 李冰, 李梁, 王露露, 等. 鹿茸胶原多肽复合酶水解工艺研究. 西北农林科技大学学报(自然科学版), 2016, 44(11): 193-201. |
14. | 盛周煌, 贾盟盟, 朱良. 罗非鱼皮胶原蛋白多肽的体外抗氧化活性. 食品科技, 2018, 43(11): 274-278. |
15. | Subhan F, Hussain Z, Tauseef I, et al. A review on recent advances and applications of fish collagen. Crit Rev Food Sci, 2021, 61(6): 1027-1037. |
16. | Hong H, Fan H B, Chalamaiah M, et al. Preparation of low-molecular-weight, collagen hydrolysates(peptides): current progress, challenges, and future perspectives. Food Chem, 2019, 301(16): 12-22. |
17. | Ahn M Y, Hwang J S, Ham S A, et al. Subcritical water hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner. Biomed Pharmacother, 2017, 7(41): 923-930. |
18. | Park S H, Kim J H, Sang G M, et al. Effects of ethanol addition on the efficiency of subcritical water extraction of proteins and amino acids from porcine placenta. Korean J Food Sci Anim Resour, 2015, 35(2): 265-271. |
19. | Jo Y J, Kim J H, Jung K H, et al. Effect of sub- and super-critical water treatment on physicochemical properties of porcine skin. Korean J Food Sci Anim Resour, 2015, 35(1): 35-40. |
20. | Lee E J, Hur J, Ham S A, et al. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int J Biol Macromol, 2017, 5(151): 281-286. |
21. | Park S H, Jo Y J. Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochem, 2019, 5(15): 176-182. |
22. | Marcet I, Álvarez C, Paredes B, et al. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manage, 2016, 49: 364-371. |
23. | Álvarez A, Tiwari B K, Rendueles M, et al. Use of response surface methodology to describe the effect of time and temperature on the production of decoloured, antioxidant and functional peptides from porcine haemoglobin by sub-critical water hydrolysis. LWT-Food Sci Technol, 2016, 6(24): 280-289. |
24. | Sionkowska A, Adamiak K, Musial K, et al. Collagen based materials in cosmetic applications: a review. Materials, 2020, 13(19): 1-15. |
25. | Ledwoń P, Errante F, Papini A M, et al. Peptides as active ingredients: a challenge for cosmeceutical industry. Chem Biodivers, 2021, 18(2): 1-14. |
26. | Hou H, Li B, Zhang Z, et al. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin. Food Chem, 2012, 135(3): 1432-1439. |
27. | Tadini K A, Mercúrio D G, Campos P M B G M. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties-clinical study. Braz J Pharm Sci, 2015, 51: 901-909. |
28. | Peng Zhilan, Chen Beibei, Zheng Qinsheng, et al. Ameliorative effects of peptides from the oyster (Crassostrea hongkongensis) protein hydrolysates against UVB-induced skin photodamage in mice. Mar Drugs, 2020, 18(6): 288. |
29. | Sharkawy A, Silva A M, Rodrigues F, et al. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Aspects, 2021, 631: 127677. |
30. | Felician F F, Xia Chunlei, Qi Weiyan, et al. Collagen from marine biological sources and medical. Chem Biodivers, 2018, 15(5): 1-18. |
31. | Kim D U, Chung H C, Choi J, et al. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: a randomized, double-blind, placebo-controlled study. Nutrients, 2018, 10(7): 2-11. |
32. | Czajka A, Kania E M, Genovese L, et al. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr Res, 2018, 6(1): 97-108. |
33. | Kluczyk A, Ludwiczak J, Modzel M, et al. Chemical and biological properties of anti-wrinkle peptide argireline. J Antibiot, 2021, 10(3): 5. |
34. | Selvaraj K, Shin D C, Yoo B K. Effect of partially hydrolyzed ginsenoside on in vitro skin permeation and retention of collagen pentapeptide (palmitoyl-KTTKS). India J Pharm Sci, 2021, 83(1): 76-83. |
35. | Aldag C, Teixeira D N, Leventha P S. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clin Cosmet Inv Derm, 2016, 9: 411-419. |
36. | Pickart L, Vasquez-Soltero J M, Margolina A. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxid Med Cell Longev, 2012, 3: 1-8. |
37. | Mortazavi S M, Kobarfard F, Maibach H I, et al. Effect of palmitic acid conjugation on physicochemical properties of peptide KTTKS: a preformulation study. J Cosmet Sci, 2019, 70(6): 299-312. |
38. | Choi Y L, Park E J, Kim E, et al. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol Ther, 2014, 22(4): 321-327. |
39. | Dreher F. A novel matrikine-like micro-protein complex (MPC) technology for topical skin rejuvenation. J Drugs Dermatol, 2016, 15(4): 457-464. |
40. | 白耀辉, 张优良, 岑名迅, 等. 添加生物活性多肽的抗衰老化妆品性能研究. 广州化工, 2020, 48(10): 67-70. |
41. | 王领, 刘佳伟, 赵诗艺, 等. 海参多肽抗衰老功效研究. 中国化妆品, 2022(3): 91-97. |
42. | Lin P, Alexander R A, Liang C H, et al. Collagen formula with djulis for improvement of skin hydration, brightness, texture, crow's feet, and collagen content: a double-blind, randomized, placebo-controlled trial. J Cosmet Dermatol, 2020, 10(11): 188-194. |
43. | Aguirre-Cruz G, Leon-Lopez A, Cruz-Gomez V, et al. Collagen hydrolysates for skin protection: oral administration and topical formulation. Antioxidants (Basel), 2020, 9(2): 181. |
44. | Ajeeshkumar K K, Aneesh P A, Raju N, et al. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: a review. Compr Rev Food Sci F, 2021, 20(2): 1280-1306. |
45. | Han S B, Won B, Yang S C, et al. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J Ind Eng Chem, 2021, 98: 289-297. |
46. | 张曼玉, 楼晨曦, 曹傲能. 主动靶向载药脂质体在肿瘤治疗中的研究进展. 生物医学工程学杂志, 2022, 39(3): 633-638. |
47. | Huang Xueqin, Chen Lingzhi, Zhang Yuping, et al. GE11 peptide conjugated liposomes for EGFR-targeted and chemophotothermal combined anticancer therapy. Bioinorg Chem Appl, 2021, 2021: 5534870. |
48. | Alencar-Silva T, Braga M C, Santana G O S, et al. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv, 2018, 36(8): 2019-2031. |
49. | Allouche M, Hamdi I, Nasri A, et al. Laboratory bioassay exploring the effects of anti-aging skincare products on free-living marine nematodes: a case study of collagen. Environ Sci Pollut R, 2020, 27(2): 11403-11412. |
50. | Sun B K, Siprashvili Z, Khavari P A. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212): 941-945. |
51. | Bian Q, Sun W C, Zeng Z, et al. CAG peptide modified magnetic ferroferric oxide nanoparticles and its effect on endothelial cells. Funct Mater, 2020, 51(9): 9178-9184. |
52. | Sridhar K, Inbaraj B S, Chen B H E. Recent developments on production, purification and biological activity of marine peptides. Food Res Int, 2021, 147: 110468. |
53. | Ganesan A R, Mohanram M S G, Balasubramanian B, et al. Marine invertebrates’ proteins: a recent update on functional property. J King Saud Univ Sci, 2020, 32(2): 1496-1502. |
54. | Liu M H, Beynet D P, Gharavi N M. Overview of deep dermal fillers. Facial Plast Surg, 2019, 35(3): 224-229. |
55. | Chakniramol S, Wierschem A, Cho M G, et al. Physiological and clinical aspects of bioactive peptides from marine animals. Antioxidants (Basel), 2022, 11(5): 1021. |
56. | Goldbloom-Helzner L, Hao D K, Wang A J. Developing regenerative treatments for developmental defects, injuries, and diseases using extracellular matrix collagen-targeting peptides. Int J Mol Sci, 2019, 20(17): 1-16. |
57. | Wahyudi H, Reynolds A A, Li Y, et al. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release, 2016, 240(28): 323-331. |
- 1. Sifre V, Soler C, Redondo J I. Macroscopic and histological improvements in joint cartilage, subchondral bovne and synovial fluid membrane with glycosaminoglycans and native type II collagen in a rabbit model of osteoarthritis. Osteoarthr Cartilage, 2020, 28(1): 206.
- 2. Mekkat A, Poppleton E, An B, et al. Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage. J Struct Biol, 2018, 203(3): 247-254.
- 3. Liu Qingsheng, Singh A, Liu Lingyun. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromolecules, 2013, 14(1): 226-231.
- 4. Hadidi M, Zydney A L. Fouling behavior of zwitterionic membranes: Impact of electrostatic and hydrophobic interactions. J Membrane Sci, 2014, 452: 97-103.
- 5. Li P H, Lu W C, Chan Y J, et al. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture, 2020, 515: 734590.
- 6. Sivaraman K, Shanthi C. Role of fish collagen hydrolysate in attenuating inflammation-an in vitro study. J Food Biochem, 2021, 45(1): 1-13.
- 7. Zhang Jixian, Wen Chaoting, Zhang Haihui, et al. Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends Food Sci Tech, 2019, 11(18): 183-195.
- 8. 郑巧东, 贠军贤, 林东强, 等. 胶原蛋白酸解为胶原多肽的动力学研究. 中国皮革, 2005, 34(11): 21-27.
- 9. 曹健, 陈秀金, 曾实, 等. 碱法水解脱铬革屑制备胶原蛋白水解物的研究. 中国皮革, 2002, 32(21): 12-15.
- 10. Tavano L O. Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B-enzym, 2013, 90: 1-11.
- 11. Hong H, Roy B C, Chalamaiah M, et al. Pretreatment with formic acid enhances the production of small peptides from highly cross-linked collagen of spent hens. Food Chem, 2018, 258(30): 174.
- 12. 陈贝, 张鸽, 乔琨, 等. 双斑东方鲀鱼皮胶原多肽的制备及其在化妆品中的功效与刺激性评价. 天然产物研究与开发, 2020, 32: 1190-1199.
- 13. 李冰, 李梁, 王露露, 等. 鹿茸胶原多肽复合酶水解工艺研究. 西北农林科技大学学报(自然科学版), 2016, 44(11): 193-201.
- 14. 盛周煌, 贾盟盟, 朱良. 罗非鱼皮胶原蛋白多肽的体外抗氧化活性. 食品科技, 2018, 43(11): 274-278.
- 15. Subhan F, Hussain Z, Tauseef I, et al. A review on recent advances and applications of fish collagen. Crit Rev Food Sci, 2021, 61(6): 1027-1037.
- 16. Hong H, Fan H B, Chalamaiah M, et al. Preparation of low-molecular-weight, collagen hydrolysates(peptides): current progress, challenges, and future perspectives. Food Chem, 2019, 301(16): 12-22.
- 17. Ahn M Y, Hwang J S, Ham S A, et al. Subcritical water hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner. Biomed Pharmacother, 2017, 7(41): 923-930.
- 18. Park S H, Kim J H, Sang G M, et al. Effects of ethanol addition on the efficiency of subcritical water extraction of proteins and amino acids from porcine placenta. Korean J Food Sci Anim Resour, 2015, 35(2): 265-271.
- 19. Jo Y J, Kim J H, Jung K H, et al. Effect of sub- and super-critical water treatment on physicochemical properties of porcine skin. Korean J Food Sci Anim Resour, 2015, 35(1): 35-40.
- 20. Lee E J, Hur J, Ham S A, et al. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int J Biol Macromol, 2017, 5(151): 281-286.
- 21. Park S H, Jo Y J. Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process Biochem, 2019, 5(15): 176-182.
- 22. Marcet I, Álvarez C, Paredes B, et al. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters. Waste Manage, 2016, 49: 364-371.
- 23. Álvarez A, Tiwari B K, Rendueles M, et al. Use of response surface methodology to describe the effect of time and temperature on the production of decoloured, antioxidant and functional peptides from porcine haemoglobin by sub-critical water hydrolysis. LWT-Food Sci Technol, 2016, 6(24): 280-289.
- 24. Sionkowska A, Adamiak K, Musial K, et al. Collagen based materials in cosmetic applications: a review. Materials, 2020, 13(19): 1-15.
- 25. Ledwoń P, Errante F, Papini A M, et al. Peptides as active ingredients: a challenge for cosmeceutical industry. Chem Biodivers, 2021, 18(2): 1-14.
- 26. Hou H, Li B, Zhang Z, et al. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin. Food Chem, 2012, 135(3): 1432-1439.
- 27. Tadini K A, Mercúrio D G, Campos P M B G M. Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties-clinical study. Braz J Pharm Sci, 2015, 51: 901-909.
- 28. Peng Zhilan, Chen Beibei, Zheng Qinsheng, et al. Ameliorative effects of peptides from the oyster (Crassostrea hongkongensis) protein hydrolysates against UVB-induced skin photodamage in mice. Mar Drugs, 2020, 18(6): 288.
- 29. Sharkawy A, Silva A M, Rodrigues F, et al. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Aspects, 2021, 631: 127677.
- 30. Felician F F, Xia Chunlei, Qi Weiyan, et al. Collagen from marine biological sources and medical. Chem Biodivers, 2018, 15(5): 1-18.
- 31. Kim D U, Chung H C, Choi J, et al. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: a randomized, double-blind, placebo-controlled study. Nutrients, 2018, 10(7): 2-11.
- 32. Czajka A, Kania E M, Genovese L, et al. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr Res, 2018, 6(1): 97-108.
- 33. Kluczyk A, Ludwiczak J, Modzel M, et al. Chemical and biological properties of anti-wrinkle peptide argireline. J Antibiot, 2021, 10(3): 5.
- 34. Selvaraj K, Shin D C, Yoo B K. Effect of partially hydrolyzed ginsenoside on in vitro skin permeation and retention of collagen pentapeptide (palmitoyl-KTTKS). India J Pharm Sci, 2021, 83(1): 76-83.
- 35. Aldag C, Teixeira D N, Leventha P S. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clin Cosmet Inv Derm, 2016, 9: 411-419.
- 36. Pickart L, Vasquez-Soltero J M, Margolina A. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxid Med Cell Longev, 2012, 3: 1-8.
- 37. Mortazavi S M, Kobarfard F, Maibach H I, et al. Effect of palmitic acid conjugation on physicochemical properties of peptide KTTKS: a preformulation study. J Cosmet Sci, 2019, 70(6): 299-312.
- 38. Choi Y L, Park E J, Kim E, et al. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol Ther, 2014, 22(4): 321-327.
- 39. Dreher F. A novel matrikine-like micro-protein complex (MPC) technology for topical skin rejuvenation. J Drugs Dermatol, 2016, 15(4): 457-464.
- 40. 白耀辉, 张优良, 岑名迅, 等. 添加生物活性多肽的抗衰老化妆品性能研究. 广州化工, 2020, 48(10): 67-70.
- 41. 王领, 刘佳伟, 赵诗艺, 等. 海参多肽抗衰老功效研究. 中国化妆品, 2022(3): 91-97.
- 42. Lin P, Alexander R A, Liang C H, et al. Collagen formula with djulis for improvement of skin hydration, brightness, texture, crow's feet, and collagen content: a double-blind, randomized, placebo-controlled trial. J Cosmet Dermatol, 2020, 10(11): 188-194.
- 43. Aguirre-Cruz G, Leon-Lopez A, Cruz-Gomez V, et al. Collagen hydrolysates for skin protection: oral administration and topical formulation. Antioxidants (Basel), 2020, 9(2): 181.
- 44. Ajeeshkumar K K, Aneesh P A, Raju N, et al. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: a review. Compr Rev Food Sci F, 2021, 20(2): 1280-1306.
- 45. Han S B, Won B, Yang S C, et al. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J Ind Eng Chem, 2021, 98: 289-297.
- 46. 张曼玉, 楼晨曦, 曹傲能. 主动靶向载药脂质体在肿瘤治疗中的研究进展. 生物医学工程学杂志, 2022, 39(3): 633-638.
- 47. Huang Xueqin, Chen Lingzhi, Zhang Yuping, et al. GE11 peptide conjugated liposomes for EGFR-targeted and chemophotothermal combined anticancer therapy. Bioinorg Chem Appl, 2021, 2021: 5534870.
- 48. Alencar-Silva T, Braga M C, Santana G O S, et al. Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv, 2018, 36(8): 2019-2031.
- 49. Allouche M, Hamdi I, Nasri A, et al. Laboratory bioassay exploring the effects of anti-aging skincare products on free-living marine nematodes: a case study of collagen. Environ Sci Pollut R, 2020, 27(2): 11403-11412.
- 50. Sun B K, Siprashvili Z, Khavari P A. Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346(6212): 941-945.
- 51. Bian Q, Sun W C, Zeng Z, et al. CAG peptide modified magnetic ferroferric oxide nanoparticles and its effect on endothelial cells. Funct Mater, 2020, 51(9): 9178-9184.
- 52. Sridhar K, Inbaraj B S, Chen B H E. Recent developments on production, purification and biological activity of marine peptides. Food Res Int, 2021, 147: 110468.
- 53. Ganesan A R, Mohanram M S G, Balasubramanian B, et al. Marine invertebrates’ proteins: a recent update on functional property. J King Saud Univ Sci, 2020, 32(2): 1496-1502.
- 54. Liu M H, Beynet D P, Gharavi N M. Overview of deep dermal fillers. Facial Plast Surg, 2019, 35(3): 224-229.
- 55. Chakniramol S, Wierschem A, Cho M G, et al. Physiological and clinical aspects of bioactive peptides from marine animals. Antioxidants (Basel), 2022, 11(5): 1021.
- 56. Goldbloom-Helzner L, Hao D K, Wang A J. Developing regenerative treatments for developmental defects, injuries, and diseases using extracellular matrix collagen-targeting peptides. Int J Mol Sci, 2019, 20(17): 1-16.
- 57. Wahyudi H, Reynolds A A, Li Y, et al. Targeting collagen for diagnostic imaging and therapeutic delivery. J Control Release, 2016, 240(28): 323-331.