• 1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, P. R. China;
  • 2. Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China;
  • 3. School of Science, Ningxia Medical University, Yinchuan 750004, P. R. China;
  • 4. Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, Jiangsu 214002, P. R. China;
ZHAO Yanan, Email: zyn1644o@163.com
Export PDF Favorites Scan Get Citation

In recent years, the task of object detection and segmentation in medical image is the research hotspot and difficulty in the field of image processing. Instance segmentation provides instance-level labels for different objects belonging to the same class, so it is widely used in the field of medical image processing. In this paper, medical image instance segmentation was summarized from the following aspects: First, the basic principle of instance segmentation was described, the instance segmentation models were classified into three categories, the development context of the instance segmentation algorithm was displayed in two-dimensional space, and six classic model diagrams of instance segmentation were given. Second, from the perspective of the three models of two-stage instance segmentation, single-stage instance segmentation and three-dimensional (3D) instance segmentation, we summarized the ideas of the three types of models, discussed the advantages and disadvantages, and sorted out the latest developments. Third, the application status of instance segmentation in six medical images such as colon tissue image, cervical image, bone imaging image, pathological section image of gastric cancer, computed tomography (CT) image of lung nodule and X-ray image of breast was summarized. Fourth, the main challenges in the field of medical image instance segmentation were discussed and the future development direction was prospected. In this paper, the principle, models and characteristics of instance segmentation are systematically summarized, as well as the application of instance segmentation in the field of medical image processing, which is of positive guiding significance to the study of instance segmentation.

Citation: ZHOU Tao, ZHAO Yanan, LU Huiling, HOU Senbao, ZHENG Xiaomin. Medical image instance segmentation: from candidate region to no candidate region. Journal of Biomedical Engineering, 2022, 39(6): 1218-1232. doi: 10.7507/1001-5515.202201034 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Design and preliminary application of outdoor flying pigeon-robot
  • Next Article

    The current applicating state of neural network-based electroencephalogram diagnosis of Alzheimer’s disease